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Abstract. Channels with periodically repeating geometries are often simulated using periodic or cyclic

boundary conditions. By calculating the temperature and flow field in one periodic module, the resulting
distributions can be generalized to multiple modules. This reduces the computational load by simulating

a single module versus the whole structure. This is a particularly useful approach when performing large

optimisation studies of periodic geometries, such as compact heat exchangers. Currently, OpenFOAM
only supports cyclic boundary conditions for pressure and momentum, but not heat transfer. The

present work introduces a steady and an unsteady solver for cyclic heat transfer with constant wall

temperature boundary conditions. The solver is validated against analytical Hagen-Poiseuille flow and
two configurations of periodic wavy channels. In the latter case, the results are compared to existing

literature.

1. Introduction

Heat conduction and diffusion of fluid in ducts of various cross-sectional shapes has been studied for
many years. A number of technically important heat exchanger and duct configurations possess cross
sections of flow that vary periodically [1]. An example of this is an offset plate-fin heat exchanger in which
the channel bounding walls are periodically interrupted by gaps. Another example of periodic structures is
wavy or corrugated channels, meant to augment heat transfer [2,3]. In these situations, the computational
demand required to simulate the entire domain is likely prohibitive. As an alternative approach, the
domain is taken such that the structure is periodic, and therefore the heat transfer can be characterised
by simulating a much smaller volume using periodic boundary conditions. This paper implements a
periodic boundary condition for heat transfer with a constant wall temperature. An appropriate multi-
scale procedure where the appropriate heat transfer metrics can be scaled from a unit cell, as in Ciuffini et
al. [4], can be used to determine the performance of the larger structure. This reduction in computation
time is particularly significant when performing large scale optimisation on a structure.

The first generalized description of appropriate temperature transforms and boundary treatments
for periodic flow, in both pressure and temperature fields, was proposed by Patankar et al. [1]. This
description was valid for fully developed flow with two dimensional or axisymmetric duct flow in the
laminar regime. Patankar et al. considered two heat transfer cases: constant wall temperature (CWT)
and constant surface heat flux (SHF). For the CWT case, the temperature decay rate, λL is an unknown
function that is approximated and the temperature field is normalized such that the source terms for the
energy equation are only a function of a decay rate. For the SHF case, the source terms for the energy
equation are only a function of the velocity and a temperature difference with no need to solve for an
unknown λ (x).

To make the calculation of λ (x) easier, Stalio and Piller [5] introduced a normalized temperature based
on the temperature transform from Patankar et al. [1]. This new transform allowed the decay rate to
be the root of a quadratic equation based on the integration of the energy equation over the simulation
domain. This model was extended by Wang et al. [6] so that the decay rate became a simple energy balance
between the flux entering and leaving the periodic cell. The advantage of this method is that the decay
rate could be calculated without the volumetric integration of the entire simulation domain. Currently,
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the Patankar et al. model is available in commercial codes such as Ansys® Fluent [7], but only periodic
(cyclic) flow for pressure and momentum is supported by OpenFOAM. There exists other boundary
condition options such as jumpCyclic [8], where temperature value between patches can be specified by
a uniform or non-uniform jump. The temperature field is then calculated based on the difference between
the inlet and outlet temperatures. This condition is useful if the outlet temperature is known beforehand,
but cannot be used if you specify a constant wall temperature and the final temperature field is unknown.
The approach of Patankar et al. [1] only prescribes the shape of the temperature field and the field itself
is calculated.

There have been studies involving periodic flow with SHF [9] boundary conditions utilizing solver code
developed by Hærvig [10]. This code only supports SHF flows which involves an extra source term on
the energy equation with no need to solve for the decay rate, λ (x), that is needed for the CWT case.
The CWT case is a valid model for many other heat transfer cases, so this work focuses on that model.
A successful implementation of the Wang et al. [6] model, with CWT boundary conditions, exists for
OpenFOAM, and was used to study 2D [11] wavy channels and later extended to 3D [12].

Where this work differs from the above works is in the implementation of a steady solver for cyclic heat
transfer with CWT boundary conditions. The above works have only addressed unsteady flows of a fluid
at Prandtl 0.7. This work implements a similar solver model for both steady (SIMPLE) and unsteady
(PIMPLE) algorithms and seeks to give a comprehensive validation and characterization of these two
solver. A further difference between this work and the above works is the inclusion of fluids with different
Prandtl numbers. This work considers two fluids with Prandtl numbers 0.706 and 4.834, representing
air and water, and there is a striking difference in solver behavior between the two fluids at the same
Reynolds number.

This work is organized as follows: Section 2 presents the mathematical basis of decomposing the flow
field into a periodic pressure and temperature field. Section 3 describes hows the solver is implemented
to solve for the temperature field. Section 4 presents the solver validation with 2D Hagen-Poiseuille Flow
and wavy channel geometries. This section further provides a comparison of 2D wavy channel simulations
with published results.

2. Theoretical Background

Following the work of of Patankar et al. [1] and the subsequent works of Stalio and Pillar [5] and
Wang et al. [6], the pressure and temperature fields are decomposed into a global mass flow of the system
and local fluctuations. Using the argument and formulation presented in [6], the energy flux through a
single module is used to determine the temperature field. This section provides the mathematical basis
for the cyclic heat transfer solver.

2.1. Theory of Periodic Mass Flow. For fully developed flows within a periodic module, the flow
field is driven by a pressure gradient governed by

∂ρ

∂t
+∇ · ρu = 0 (1)

∂u

∂t
+∇ · (uu) = −1

ρ
∆P + ν∇2u. (2)

where ρ is the fluid density, P is the pressure, u is the velocity flow vector, ν is the kinematic viscosity,
and t is the time. When the flow is periodic within a module, the velocity vector follows

u(x±mL, y) = u(x, y), (3)

where L is the length of the periodic unit in the stream-wise direction, and m is an integer. The fluid
pressure will decrease along the flow direction with the following relationship [1]:

P (x, y) = −βx+ P̄ (x, y), (4)

where β is a constant defined as

β =
P (x, y)− P (x±mL, y)

L
. (5)

Here βx is related to the global mass flow of the system and P̄ (x, y) represents the local pressure fluctu-
ations.

In practice, running a cyclic simulation with OpenFOAM, the pressure gradient is calculated and
constrained with the meanVelocityForce entry in the fvOptions or fvConstraints file, depending on
the version. This option lets a user specify an average flow rate through a volume that gets recalculated
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every timestep. The pressure gradient is then changed such that the volume averaged velocity is a user-
defined function. A detailed description of the implementation of such a constraint with validation is
provided by [13].

2.2. Theory of Periodic Heat Transfer. For 2D laminar flow, the temperature field is computed by
the energy equation

∂T

∂t
+ u · ∇T = α∇2T, (6)

where u is the flow velocity, α is the thermal diffusivity, and T is the temperature. Here, we assume an
incompressible fluid with a constant Prandtl number and a negligible viscious dissipation term [14]. For
hydro-dynamically fully developed flow,

∂2T

∂x2
= 0, (7)

which reduces the energy equation to

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
. (8)

For the CWT case, following the work of [6], the wall temperature is subtracted from the temperature
field,

θ = T (x, y)− Tw, (9)

where θ is the reduced temperature, and Tw is the wall temperature. The wall boundary conditions
ensure that θ(Ω) = 0, where Ω is the wall surface. The periodic relationship for the temperature field is
assumed to follow the form:

θ(x±mL, y) = e−λL(±mL)θ(x, y), (10)

where λL is a decay constant in the streamwise direction [5]. Stalio and Piller [5] introduced a periodic
temperature field, θ̄, divided by the exponential decay as

θ̄(x, y) =
θ(x, y)

e−λLx
=
T (x, y)− Tw

e−λLx
. (11)

Substituting Eqn. 11 into the energy equation, Eqn. 6 gives

∂θ̄

∂t
+ u · ∇θ̄ = α∇2θ̄ +

(
αλ2

L + λLux
)
θ̄ − 2αλL

∂θ̄

∂x
, (12)

where ux is the velocity component in the flow direction and α is the thermal diffusivity of the fluid.
Equation 12 satisfies the boundary condition of

θ̄(x±mL, y) = θ̄(x, y). (13)

After solving for θ̄, the field is divided by the average of the inlet in order to keep the mean inlet
θ̄in,mean = 1, as done in [1,6,11,12]. This is a necessary condition to prevent the temperature field from
increasing towards infinity.

To determine the decaying rate, λL, the energy conservation method presented in [6] is used. Taking
the fluid volume as a unit control volume, there are five streams of heat flux crossing the control volume
as follows:

(I) flux entering the volume at the inlet: ρCP
∫
in
uxθ̄dy;

(II) flux leaving the control volume at the outlet: ρCP
∫
out

uxθ̄dy;

(III) streamwise diffusion leaving the control volume at the inlet: κ
∫
in

( ∂θ̄∂x )dy;

(IV) streamwise diffusion entering the control volume at the outlet: κ
∫
out

(
∂θ̄
∂x

)
dy;

(V) heat flux leaving the control volume at the wall surface Ω: κ
∫

Ω

(
∂θ̄
∂n

)
ds.

The energy conservation principles for a steady system, using the above equations, becomes

(I)− (II)− (III) + (IV )− (V ) = 0 (14)

here the subscripts in and out indicate the inlet and outlet fluxes, n is the direction normal to the wall,
CP is the heat capacity, and κ is the thermal conductivity of the fluid. Setting the inlet at x = 0, applying
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the periodic relationship in Eqn. 10, and solving for λL gives

λL = − 1

L
ln

1−
α
∫

Ω

(
∂θ

∂n

)
ds

∫
in

(
uxθ̄ + α

∂θ̄

∂x

)
dy

 (15)

3. Solver Implementation

The standard simpleFoam and pimpleFoam solvers are used as the base with the energy equation
added in the form of Eqn. 12. Figure 1 shows the steps of the solver, starting with the pressure and
momentum equations being solved first utilizing the cyclic constraint on the volumetric average velocity.
As with the work of [6,11,12], there is a user specified delay given by the number of iterations, n, before
λL is calculated, and a delay between subsequent calculations, m. This delay is read into the solver in
the readTransportProperties.H file and implemented as an if-else statement in the lambdaEqn.H file
within the source files. The solver keeps track of which iteration is currently being solved for, ∆N , and
how many iterations have elapsed since the last calculation of λL, ∆M . This delay condition is needed
to ensure that all fields have had time to develop.

Initially, a user specified λL is used until the number of iterations has reached the desired value, as
shown in lambdaEqn.H. θ̄ is then calculated from λL and Eqn. 12 in thetaBarEqn.H. After θ̄ is calculated,
the whole field is normalized by the average inlet θ̄ using the gAverage function. The temperature fields
θ and T can then be calculated readily in thetaEqn.H, using Eqn. 11.
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START

Solve Pressure/Momentum

User specified delay:
∆N > n

User specified delay:
∆M > m

Calculate λL Use current λL Use initial λL

Calculate θ̄

Normalize θ̄ by θ̄mean,in

Calculate T and θ from θ̄ and λL

Yes No

Yes No

Figure 1. Algorithm used in the cyclic heat transfer solver. Here ∆N signifies the
number of iterations the solver has solved the pressure/momentum equation, n is the
specified number of iterations used as a delay (2000 for this work), ∆M is the number of
iterations in between updating the λL value, m is a counter of the number of iterations
since the last update of λL. The user specified delay is introduced to ensure that the
temperature field has developed before calculating λL.
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4. Validation

To validate the solver, two cases are chosen: 2D Hagen–Poiseuille (HP) flow and 2D wavy channels.
The first is chosen as there is an analytical solution and the second as there are many other numerical
and experimental studies. First, common simulation parameters for all geometries are presented. Then,
results for 2D HP, arc, and sine channels are given and compared to analytical and published results.

4.1. Common Simulation Parameters. Within each validation case, the wall is set to a constant wall
temperature Tw = 293.15 K and the temperature of the inlet fluid is set to Tinlet = 323.15 K. All fluid
properties are calculated using the pyFluids package [15] for the fluid at atmospheric pressure and film
temperature, Tfilm = 308.15 K. The average velocity for the cyclic condition, Ubar, is set depending on
the Reynolds number, which is geometry-dependent and described in the following sections.

Two fluids are considered for this validation, air and water. Table 1 gives the fluid properties used
in this work. The parameters of importance when considering fully developed flow and heat transfer in

Table 1. Fluid properties for the two fluids considered in this work.

Property symbol Units Air Water
Density ρ [kg ·m−3] 1.146 994.033
Dynamic Viscosity µ [kg ·m−1 · s−1] 1.893e-05 7.191e-04
Kinematic Viscosity ν [m2 · s−1] 1.652e-05 7.234e-07
Prandtl Pr 0.706 4.834
Heat Capacity CP [J · kg−1 ·K−1] 1006.696 4179.258
Thermal Diffusivity α [m2 · s−1] 2.340e-05 1.497e-07
Thermal Conductivity κ [W ·m−1 ·K−1] 0.027 0.622

channels are the pressure drop, Nusselt number, and friction factor. Pressure drop is directly given by

∆P = ρ(Pm,inlet − Pm,outlet), (16)

where ρ is the fluid density, Pm,inlet is the mean pressure at the inlet patch, and Pm,outlet is the mean
pressure at the outlet patch. This form is adopted since pressure is reported as kinematic pressure in
OpenFOAM. From this, the friction factor is calculated by [16,17]

f =
∆PLc

2LρU2
av

, (17)

where Lc is the length scale used in the Reynolds number, L is the length of the domain, ρ is the fluid
density, and Uav is the mean flow velocity of the module. The Nusselt number is calculated by

Nu =
hDh

κ
, (18)

where Dh is the geometry dependent hydraulic diameter, κ is the thermal conductivity of the fluid, and
h is the heat transfer coefficient defined as

h =
ṁCp (Tmc,inlet − Tmc,outlet)

AhtTlm
. (19)

Here ṁ is the mass flow rate, Cp is the heat capacitance of the fluid, Tmc,inlet is the mixing cup temper-
ature at the inlet, Tmc,outlet is the mixing cup temperature at the outlet, Aht is the heat transfer surface
area, and Tlm is the log-mean temperature difference given by

Tlm =
(Tw − Tmc,outlet)− (Tw − Tmc,inlet)
ln [(Tw − Tmc,outlet) / (Tw − Tmc,inlet)]

, (20)

where Tw is the wall temperature.
All temperatures are given as mixing cup temperatures, which are normalized by the velocity using

Tmc =

∑N
i=0 TiUx,iVi∑N
i=0 Ux,iVi

. (21)

Here T is the temperature, Ux is the velocity in the flow direction, V is the volume of the cell, and N is
the total number of cells in the domain. The normalization of the velocity profile is defined by

U∗ =
U

U0
, (22)
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where U0 is the average inlet velocity, or mean velocity over one module, depending on the geometry.
The temperature profile is defined by

T ∗ =
T

T0
, (23)

where T0 is the average inlet temperature, or mean temperature over one module. For Hagen-Poisseuille
flow, the average velocity and temperature is taken at the inlet, whereas these values are taken over the
entire domain.

4.2. Numerical Setup. The OpenFOAM laminar model is used to solve for pressure and momen-
tum. Table 2 provides the numerical schemes used in this work. All schemes were kept the same between
the steady and unsteady solver with the only difference being the time scheme. The adjustable time step
option is used to keep the Courant number below 1.0 for the unsteady solver.

Table 2. Numerical schemes and their respective term. Schemes are limited to second
order, except for time scheme. dj represents the partial derivative where 1 − 3 is a
Cartesian coordinate direction, i.e., 1 = ∂x, 2 = ∂y, 3 = ∂z.

Term Scheme OpenFOAM Entry

time scheme
∂ui
∂t

1st order, implicit Euler

gradients
∂

∂dj
2nd order, linear Gauss linear

advective U uj
∂ui
∂dj

2nd order, bounded bounded Gauss limitedLinear 0.2

laplacian
∂2

∂d2
j

2nd order, uncorrected Gauss linear uncorrected

interpolation φPφL 2nd order, linear linear

surface normal gradients
∂

∂n
No non-orthogonal correction uncorrected

wallDistance mesh-wave method meshWave

4.3. 2D Hagen-Poiseuille Flow. The analytical solution for Hagen-Poiseuille flow is provided in Ap-
pendix A. Figure 2 shows the overall simulation domain for one periodic module. For HP flow, the
hydraulic diameter, Dh, and characteristic length, Lc, is taken to be 2H, where H is the height of the
domain [18].

The mesh was constructed using the blockMesh utility with no grading. A grid convergence study
was performed using the method developed by Roache [19,20]. Results are presented in the supplementary
document. The following section shows that convergence of the temperature field, specifically λL, needs
to be considered when using this solver.

4.3.1. λL and Velocity Convergence. Care must be taken to ensure that both the velocity and thermal
field have reached a fully developed condition, as these happen at different flow times. We make the
distinction here between simulation time and run time, with the latter being the amount of time it takes
to complete the simulation and the former being the flow time of the simulation. For the purpose of this
work, the velocity field is considered fully developed when there is no change between the inlet and outlet
velocities. Since the temperature field is calculated directly using the decay constant, λL discussed in
Section subsection 2.2, the temperature field is considered fully developed when there is no change in λL.

Figure 3 and Fig. 4 show the development of λL and Ux over simulation time for the steady and
unsteady solvers at a range of Reynolds numbers for air, Pr=0.706, and water, Pr=4.486, respectively.
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Hagen–Poiseuille Flow

L=1.0 m

2H=0.5 mUx

in
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et

wall

wall

y

x

Figure 2. Schematic showing the 2D channel for Hagen-Poiseuille flow and the periodic
module taken from the domain.

Figure 3a shows that there is an inverse relationship between λL and Reynolds number. A smaller λL
indicates less influence of the source terms in Eqn. 12 which causes the temperature field to decay less
from the inlet to outlet.
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Figure 3. Time for (a) λL and (b) inlet / outlet velocities for air at a Prandtl number
of 0.706. Both steady and unsteady results are shown. Steady results given per iteration
and unsteady results given per flow time in the x-axis. Reynolds numbers are 50, 70,
100, 150, 200, 300, and 500.

Figure 3 and Fig. 4 further show that the λL values for water are much lower than that of air at the
same Reynolds number. From Fig. 15, this is expected since the thermal diffusivity, α, of water is ≈150
times less than that of air. This means that water can move more heat through the system which gives
less variation in temperature from the inlet to the outlet, corresponding to a smaller λL. Comparing
Fig. 3a and Fig. 4a, the unsteady solver for a Pr=0.706 reaches the steady-state value much quicker than
the steady solver, and the inverse is true for the fluid with Pr=4.486. Referring to Fig. 3a and Fig. 3a,
water takes 2 to 8 times as long for λL to converge compared to air, depending on the Re. These two
figures show that care should be taken to examine the convergence of λL and velocity for a desired working
fluid, as the solver has very different results for different fluid properties.

To add to this idea, the λL for the air and water cases are plotted in terms of the Stanton number,
St = Nu

RePr . According to the analytical temperature field, Eqn. 31, this should be agnostic of the type of
fluid and both cases should only be dependent on the Reynolds and Prandtl number. If this condition is
true, then the two fluids should fall on the same line, since viscosity is cancelled out in the denominator.
Figure Fig. 5 shows that this is the case, which suggests that the decay rate, λL, is not dependent on the
fluid viscosity, but only on velocity, density, and thermal diffusivity.

4.3.2. Comparison with Analytical Results. Figure 6 gives the temperature field, normalized velocity, and
temperature profiles for air at Reynolds numbers of 50 and 500. While only two Reynolds numbers
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Figure 4. Time for (a) λL and (b) inlet / outlet velocities for water at a Prandtl number
of 4.834. Both steady and unsteady results are shown. Steady results given per iteration
and unsteady results given per flow time in the x-axis. Reynolds numbers are 50, 70,
100, 150, 200, 300, and 500.
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Figure 5. λL versus RePr for both the air and water case. Power law fit amplitude and
exponent is provided.

are shown here, all Reynolds numbers are provided in the supplementary documentation. The higher
Reynolds number case corresponds to a higher simulated velocity with the same viscosity. The inverse
relationship of λL with Reynolds number, discussed in subsubsection 4.3.1, is shown here when looking
at the normalized temperature profiles. There is less variation in the temperature from the inlet to the
outlet for the higher Reynolds case. Comparing the temperature isolines from Fig. 6a and Fig. 6b, the
temperature gradient from the wall, ∂T∂n , for the Re=50 case is higher than for Re=500. Furthermore, the

temperature gradient in the x direction ∂T
∂x is also higher for the Re=50 case. Referring to Eqn. 15, this

suggests that the velocity in the x-direction is the dominating term for the decay rate since λL decreases
with increasing Reynolds number.
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Figure 6. (a) Reynolds 50 and (b) Reynolds 500 steady solver cases for air. (a’) an-
alytical and (a”) simulated temperature field. The normalized (b’) velocity and (c’)
temperature profile are given at the inlet (x = 0), halfway (x = L/2), and outlet (x = L).

To further validate the solver for the two fluids, the Nusselt number, Nu, is calculated using Eqn. 18,
and the results are shown in Fig. 7. Both solvers show good agreement with the Nu over the range of
Reynolds numbers for both fluids. There is much more scatter for the water case, but this scatter is all
within 5% of the analytical value. The normalized analytical and simulated profiles, as shown in Fig. 6,
for all the tested Reynolds number are compared using the root-mean-square-error (RMSE). This error
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is calculated using

RMSE =

√∑
(yi − ŷi)2

N
, (24)

where yi is the simulated value for observation i, ŷi is the analytical value for observation i, and N is the
number of observations, 100 for this work. Each profile is linearly interpolated to ensure that the analytical
and simulated points on each profile match each other. Table 3 and Tab. 4 give the RMSE for air and
water, respectively. Both steady and unsteady solver cases are represented and the values are multiplied
by 100 for clarity. In most cases, the steady solver provides a closer profile to the analytical solution, but
the differences between the solvers are minor. Important here is that each profile is normalized to ≈1 so
these values indicate that the error is less than 1%.
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Figure 7. Steady and unsteady Nusselt number versus Reynolds number for cases (a)(b)
air with Prandtl number 0.706 and (c)(d) water with Prandtl number 4.834. Nusselt
correlation is a constant value of 7.54 in the laminar regime for Hagen-Poiseuille flow
with constant wall temperature boundary condition [17].

It was found that the decay rate, Eqn. 15, is sensitive to low Reynolds numbers. At any Reynolds
number below ≈50, the denominator of Eqn. 15 is smaller than the numerator causing a solver error due
to taking the natural log of a negative number. This indicates that the heat flux at the inlet is smaller
than the heat flux from the walls. As the Reynolds number decreases, the system approaches a state of
conduction instead of forced convection, where all the heat flux is from the walls with little contribution
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Table 3. Root-mean-square-error of temperature profiles for steady and unsteady solver.
RMSE reported here is multiplied by 100 for readability. Air is the working fluid with
a Prandtl number of 0.706. The first column (highlighted in gray) under each Reynolds
number is steady solver RMSE and the second column is the unsteady solver RMSE. T
is the temperature profile at the inlet (x = 0), midway (x = L/2) and outlet (x = L).
Velocity profiles have an RMSE of nearly zero, so are not shown on this table.

Profile Reynolds Numbers

50.0 70.0 100.0 150.0 200.0 300.0 500.0

T (x = 0) 0.090 0.090 0.047 0.047 0.041 0.041 0.057 0.047 0.065 0.062 0.077 0.069 0.093 0.093

T (x = L/2) 0.068 0.068 0.201 0.201 0.269 0.273 0.236 0.196 0.211 0.217 0.179 0.182 0.139 0.141

T (x = L) 0.462 0.462 0.084 0.084 0.103 0.105 0.131 0.120 0.155 0.156 0.135 0.137 0.129 0.127

Table 4. Table of root-mean-square-error of temperature profiles for steady and un-
steady solver. RMSE reported here is multiplied by 100 for readability. Water is the
working fluid with a Prandtl number of 4.486. The first column (highlighted in gray)
under each Reynolds number is steady solver RMSE and the second column is the un-
steady solver RMSE. T is the temperature profile at the inlet (x = 0), midway (x = L/2)
and outlet (x = L). Velocity profiles have an RMSE of nearly zero, so are not shown on
this table.

Profile Reynolds Numbers

50.0 70.0 100.0 150.0 200.0 300.0 500.0

T (x = 0) 0.079 0.300 0.082 0.306 0.095 0.306 0.097 0.308 0.311 0.308 0.311 0.311 0.309 0.312

T (x = L/2) 0.160 0.330 0.143 0.333 0.129 0.334 0.125 0.324 0.112 0.321 0.114 0.317 0.170 0.319

T (x = L) 0.129 0.279 0.126 0.286 0.113 0.288 0.109 0.303 0.104 0.309 0.112 0.314 0.174 0.311

from the fluid flow. Interestingly, the unsteady solver was able to achieve a lower Reynolds number than
the steady solver, but was not able to resolve λL below a value of Re≈45.

A further observation can be seen in Fig. 8 when comparing air and water at the same Reynolds
number. The data shows that there is more heat transferred from the inlet to the outlet for air than for
water. Water has a thermal diffusivity ≈150 times less than air, meaning water will conduct heat less
quickly than air. This explains the more shallow parabolic shape of the temperature fields in Fig. 8a
when compared to Fig. 8b. Furthermore, this is an example of why the heat decay rate, λL, of water is
much less than that of air.



Cyclic Heat Transfer Solver 237

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y/

H
0.00

0.080.16

0.240.32

0.40
0.48

0.56

0.64
0.72

0.800.880.961.04

1.12

1.20

1.28

1.361.441.52

0.080.160.24

0.320.400.48

0.56
0.64

0.72

0.80

0.88

0.96

1.04
1.12

1.20
1.28

1.36
1.44

1.
52

0.0 0.5 1.0 1.5 2.0
U/U0

x=0
x=L/2
x=L

0.0 0.5 1.0 1.5 2.0
T/T0

x=0
x=L/2
x=L

Re50

(a’)

(a”) (b’) (c’)

Air

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y/
H

0.00
0.08

0.16
0.240.32

0.400.48
0.56

0.640.72
0.80

0.880.96
1.04

1.121.20

1.281.361.44

1.52

1.60

0.08
0.160.24

0.320.400.480.56
0.64

0.720.800.88
0.961.04

1.121.20
1.28

1.36

1.441.52

1.60

0.0 0.5 1.0 1.5 2.0
U/U0

x=0
x=L/2
x=L

0.0 0.5 1.0 1.5 2.0
T/T0

x=0
x=L/2
x=L

Re50

(a’)

(a”) (b’) (c’)

Water

(b)

Figure 8. (a) Reynolds 50 for air and (b) Reynolds 50 for water using the unsteady
solver. (a’) analytical and (a”) simulated temperature field. The normalized (b’) velocity
and (c’) temperature profile are given at the inlet (x = 0), halfway (x = L/2), and outlet
(x = L).
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4.4. 2D Wavy Channel. A more complex geometry that has been investigated using periodic solvers
is the wavy channel [3, 12, 13, 21, 22]. Two types of channels are presented in the literature: sinusoidal
and arc, schematically shown in Fig. 9. The wavy channels in this work are defined by the following two
independent variables: Hmin/Hmax and L/a, where Hmin is the minimum channel height, Hmax is the
maximum channel height, L is the length of the channel, and a is the amplitude of the height function.
The height can then be defined by the function

ysinusoidal = (Hmin/2) + 2a sin2 (πx/L), (25)

yarc = (Hmin/2) + 2a sin (πx/L), (26)

where the subscript on y signifies the type of channel. For this work, Hmin/Hmax is 0.3 and L/a = 8.
The characteristic length scale, Lc, for the Reynolds number and friction factor is taken as the average
height of the channel

Lc = Havg =
Hmax +Hmin

2
, (27)

where Hmax and Hmin are the maximum and minimum height, respectively.
Figure 9 shows the domain of the two channel geometries and the corresponding mesh. The length scale

for the Nusselt number is double the average channel height in order to be consistent with the definition
provided in literature [11, 21–25]. This length scale does not correspond to the hydraulic diameter, as it
would be a solution to an elliptic integral with the key parameters: Hmax, Hmin, and L. The mesh was
constructed using the blockMesh utility and a python script to define the edges.

L

Hmin

2a

Hmax

(a)

L

Hmin

2a

Hmax

(b)

(c) (d)

Figure 9. Schematic and corresponding mesh for 2D (a)(c) sinusoidal and (b)(d) arc
case for fluid flow through a wavy channel used in this validation.
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4.4.1. λL and Velocity Convergence. As with the Hagen-Poiseuille flow case, the convergence of the
temperature and velocity fields are analyzed. Figure 10 and Fig. 11 show λL and two Ux sampling points
at the center line of the inlet and outlet. For the arc case, Fig. 10b shows that the flow transitions from
the steady regime to the unsteady regime after Re≈70. This is consistent with the findings of Ničeno
and Nobile [24] where the unsteady regime for the arc shaped channel was found to be at Re=84. The
sine shaped channel, Fig. 11b, shows that the transition to the unsteady regime occurs after Re=150,
which is consistent with the value of Re=175 found by Ničeno and Nobile. This is further validated by
Wang and Vanka [23], which predicted the unsteady state to be Re=167, and Nishimura et al. [25], which
qualitatively found this transition when increasing from Re=100 to Re=300.

An interesting phenomena occurs to the steady state solver in this unsteady region. Referring to Fig. 10 and Fig. 11,
it is seen that the steady solver reaches a steady-state value, but then diverges at a sufficiently large flow
time. This suggests that due to the flow being unsteady at this Reynolds number, the formulation is too
stiff for the steady-state solver. For this reason, all data reported for these cases are from the unsteady
solver. For results in the unsteady flow regime, after a sufficiently large amount of simulation time has
passed, the last 1000 data points from the unsteady solver are averaged for the calculation of Nu and f .
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Figure 10. Arc geometry (a) λL, (b) Ux convergence for air and (c) λL, (b) Ux conver-
gence for water. Reynolds numbers are 50, 70, 100, and 150

To further illustrate the effect of each solver in the unsteady flow regime on the temperature field,
temperature and velocity profiles, Fig. 12 shows the steady and unsteady case for the sine geometry at
Re≈200. As expected, the unsteady profiles are more uniform and symmetrical. Furthermore, there is a
drastic influence of these disturbances on the overall temperature field. These results show that caution
must be taken in terms of which solver is used, which flow regime exists, how many time steps are used,
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Figure 11. Sine geometry (a) λL, (b) Ux convergence for air and (c) λL, (b) Ux con-
vergence for water. Reynolds numbers are 50, 70, 100, 150, and 200.

and how converged the solution is when simulating higher Reynolds numbers with these more complex
geometries.

As with the plane channel flow in subsubsection 4.3.1, the simulation time is quantified for both steady
and unsteady cases in the supplementary document. It is shown that in the transition from steady to
unsteady flow regimes, the simulation time steps more than double. This is seen in the arc-channel case
from Re≈70 to Re≈100 and in the sine-channel case from Re≈150 to Re≈200. As previously discussed,
this is the range where the field variables begin to oscillate around some average value, which indicates
that more solver iterations were needed to solve for the field variables.
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Figure 12. Reynolds 200 using the (a) steady solver and (b) unsteady solver cases for
the sine geometry using air as the fluid. (a’) analytical and (a”) simulated temperature
field. The normalized (b’) velocity and (c’) temperature profile are given at the inlet
(x = 0), halfway (x = L/2), and outlet (x = L). Both simulations (a) and (b) are at
Re≈200.



242 M. Coe and D. Holland

4.4.2. Comparison with Published Works. The published literature on wavy or corrugated ducts focuses
on air, Pr=0.7, for a range of Reynolds numbers [11,21–25]. The dominant published geometry is the sine
channel, with a few groups performing numerical simulations on both classes of geometry [21,24]. Fig. 13
gives a comparison of the Nusselt and friction factors compared to published data.

For the arc channel case, in the steady flow regime, Fig. 13a and Fig. 13c show there is agreement in
the shape and trend between the simulation and the data from Ničeno and Nobile [24]. After the flow
becomes unsteady, the results start to diverge from the published data, but still follow the same shape
and trend of transitioning from a constant value to an exponential value. Interestingly, the simulated data
is between the values provided by Ničeno and Nobile and Bahaidarah et al. [21]. Bahaidarah performed
the numerical analysis on a channel of six modules, and the value of the 4th module was used as a data
point. This possibly contributes to the discrepancy between the data sets.

The friction factor for the arc-channel, Fig. 13c shows consistently lower results than the other data
sets. The data suggests that this pressure gradient is consistently lower for the same Uav as published
data. Interestingly, friction factor reaches a constant value at higher Reynolds numbers, also seen in the
data from Ničeno and Nobile, which suggests the present work follows the same trend.

For the sine channel case, Fig. 13b and Fig. 13d show agreement with the Nusselt number in the steady
region. After flow becomes unsteady, the present work shows a similar trend with published data, and
is in the middle of the spread of available data. A possible explanation for this is in how the data was
handled in the unsteady region. For the present work, the last 1000 time steps were used to average the
velocity and temperature fields, whereas the procedure of the published works in the unsteady regime is
unclear. The choice of post processing procedure in this region, with oscillating field variables, as shown
in Fig. 10 and Fig. 11, would have large effect on the Nusselt number. Therefore, we are not confident of
the results from the simulations in this region.

Figure 13d shows the present work is closest with the experimental results of Nishimura et al. [25]
and the numerical results of Wang and Vanka [23], but is consistently lower than all historical literature,
as with the arc-channel case. For the sine channel case, velocity profiles were reported which are used
as a further validation. Fig. 14 shows the data from the sine channel at Re≈100 and Re≈400 with the
velocity profiles from the numerical results of Bahaidarah et al. [21] and Harikrishnan and Tiwari [11].
The velocity profiles at the mid line (x = L/2) show good agreement with some discrepancies at the
minima and maxima. This suggests that the current unsteady solver resolves the correct velocity profile.

4.4.3. Summary of Simulated Air and Water Results. A summary of only the air and water results for
both configurations of wavy channels is provided here. Figure 15 gives the normalized velocity and
temperature profiles for both channels and fluid. Figure 15a indicates that there is more flow separation
for the water case than for air at the same Reynolds number in each channels respective unsteady regime.
This then translates to a markedly different normalized temperature profile, as seen in Fig. 15b. These
results suggest that the data presented in the unsteady regime, even though it shows agreement with
published works, should be carefully scrutinized.

Figure 16 gives the Nusselt number and friction factor for each channel and fluid combination. In the
steady regime, both arc and sine channels with air as the fluid are consistent with Ničeno and Nobile [24].
The arc case, in particular, has a change in slope when transitioning to the unsteady regime, which is
consistent with Ničeno and Nobile and the experimental results of Nishimura et al. [25]. Interestingly,
water has an increased Nu in the sine channel case and a decreased Nu for the arc channel, in the steady
flow regime. After a certain Reynolds number, the water case for both channels show a similar behavior
of increasing drastically. Comparing this behavior to the friction factor in Fig. 16b, the jump in Nusselt
number corresponds to a jump in the friction factor, i.e. the pressure gradient. This is further supported
by the drastic change in normalized velocity profiles, shown in Fig. 15a.
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Figure 13. Nusselt number versus Reynolds number for (a) arc and (b) sine channel
geometries. Friction Factor versus Reynolds number for (c) arc, and (d) sine channel
geometries. Solid black line represents the experimental correlation for plane channel
flow.



244 M. Coe and D. Holland

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.5

1.0

0.5

0.0

0.5

1.0

1.5
y/
H
a
vg

0.0
8

0.0
8

0.1
6

0.16

0.24

0.24

0.32

0.32

0.40

0.4
0

0.48

0.48

0.56

0.5
6

0.64

0.64

0.72

0.72

0.80

0.80

0.88

0.88

0.96

0.96

1.04

1.04

1.121.201.28

1.36

1.44

0.0 0.5 1.0 1.5 2.0
U/U0

[3]
[21]

0.0 0.5 1.0 1.5 2.0
T/T0

x=0
x=L/2
x=L

Re 100.0
(a’)

(a”) (b’) (c’)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y/
H
a
vg

0.0
8

0.0
8

0.16

0.16

0.2
4

0.2
4

0.32

0.3
2

0.40

0.40

0.48

0.48

0.56

0.56

0.64

0.64

0.72

0.72

0.80

0.80

0.88

0.88

0.96

0.96

1.04

1.04

1.12

1.12

1.20

1.28 1.36

0.0 0.5 1.0 1.5 2.0
U/U0

[3]
[21]

0.0 0.5 1.0 1.5 2.0
T/T0

x=0
x=L/2
x=L

Re 400.0
(a’)

(a”) (b’) (c’)

(b)

Figure 14. Unsteady results for (a) Re=100 and (b) Re=400 cases for the sine channel
using air as the fluid. (a’) analytical and (a”) simulated temperature field. The nor-
malized (b’) velocity and (c’) temperature profile are given at the inlet (x = 0), halfway
(x = L/2), and outlet (x = L).
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Figure 15. Normalized (a) velocity and (b) temperature profiles for each channel and
Reynolds number midway through the channel (x = L/2). Channel and fluid are pro-
vided as titles for every plot. All data presented are results from the unsteady solver.
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Figure 16. (a) Nu and (b) friction factor versus Reynolds number for each channel and
fluid combination. All data presented is results are from the unsteady solver. Solid black
line represents the experimental correlation for plane channel flow.
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5. Conclusion

In this work a heat transfer solver for cyclic boundary conditions in the laminar regime is presented.
This solver includes both a steady solver based on the SIMPLE algorithm and an unsteady solver based
on the PIMPLE algorithm. Two validation cases, Hagen-Poiseuille flow and Wavy channels, are explored
to characterize the behavior of both types of solvers. Hagen-Poiseuille flow is an important comparison
as there is an analytical solution so the velocity and temperature fields can be directly compared. The
two wavy channels are provided to characterize the solver’s behavior with a more complex geometry.
When simulating Hagen-Poiseuille flow, the results fall within 1% of the analytical solution, and discrep-
ancies within 5% when referencing the experimental Nusselt correlation. When plotting λL compared to
Reynolds and Prandtl numbers, it is found that both fluids simulated fall on the same line, confirming
these are appropriate dimensionless variables for this system.

In addition to the Hagen-Poiseuille case, the study delved into wavy channels, aiming to evaluate the
solver’s performance in more complex geometries. The simulations exhibited acceptable agreement when
compared to published data, particularly for the more laminar flow regimes. For the sine wave geometry,
the simulated data followed experimental and simulated cases, deviating by approximately 20% from
published data, while the arc geometry showed a variation of up to 60%, partly attributed to increased
oscillations in flow and temperature profiles. Nevertheless, these findings confirm that the cyclic heat
transfer solver aligns with prior research. However, it is crucial to ensure convergence of parameters such
as the decay rate (λL), especially when employing different working fluids, as water and air demonstrate
very different convergence times for the temperature field.

Future developments for this solver include incorporating an option for constant wall flux in addition
to constant wall temperature. Work will be done to integrate the constant wall flux model into this solver
with an option to use one or the other. Furthermore, there may be cases where performing conjugate
heat transfer is more appropriate than fixing the wall temperature or flux. In these cases, the solver will
be extended to the framework of OpenFOAM’s conjugate heat transfer solvers. Lastly, a multi-scaling
approach will be developed for select structures to scale from a periodic unit cell to the larger domain.
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Appendix A. Analytical solution for fully developed flow between parallel plates with
constant wall temperature

Consider two parallel plates with a separation H, shown in Fig. 17.
For a fully developed and steady flow, the streamwise velocity field is [14,17]

ux(y) =
3

2
U0

[
1−

(
2y

H

)2
]
, (28)

where the flow velocity is ux and the transverse velocity is uy = 0. U0 is the mean velocity, y is the
transverse coordinate that measure from the centerline y = 0. For this calculation, only the domain of
y =

[
0, H2

]
is considered as the result is symmetric about y = 0. Substituting Eqn. 28 into the energy

equation Eqn. 8, and assuming steady state, yields

3

2
U0

[
1−

(
2y

H

)2
]
∂T

∂x
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
. (29)

https://www.nesi.org.nz
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y = 0

H
2

−H2

x

ux

Figure 17. Schematic showing the 2D channel for fluid flow through two parallel plates
used for analytical solution.

The coordinates are then transformed following [6, 12, 26, 27] as ȳ = 2y
H and x̄ = 2x/H

PrRe′ , where Re′ =
2U0H
ν and Pr is the Prandtl number. The energy equation, Eqn. 29, becomes

3

8

(
1− ȳ2

) ∂T
∂x̄

=
∂2T

∂ȳ2
+

(
1

PrRe′

)2
∂2T

∂x̄2
. (30)

The temperature field is then assumed to be of the form [26]

T (x̄, ȳ) = Y (ȳ) e−
8
3λ

2x̄, (31)

where T is the product of transverse coordinate ȳ, an exponentially decaying function in the flow direction
x̄, and λ which is a value that needs to be iteratively solved for. Important here is that this λ is not
the same as λL in Eqn. 15, but the nomenclature is kept the same to be consistent with previous works.
Substituting Eqn. 31 into Eqn. 30 gives

Y ′′ +

[
1 +

(
8λ

3PrRe′

)2
]
λ2Y − λ2ȳ2Y = 0. (32)

This is a Sturm-Liouville problem which can be expressed as a polynomial series [6]

Y (ȳ) =

∞∑
i=0

biȳ
2i. (33)

After taking derivatives and applying boundary conditions, the following recursion relationship for the bi
coefficients arises:

b0 = 1; b1 =
mb0

2
; bi =

mbi−1 + nbi−2

(2i)(2i− 1)
(i = 2, 3, 4, ...) , (34)

where

m = −

[
1 +

(
8λ

3PrRe′

)2
]
λ2;n = λ2. (35)

To solve for λ, an expression for up to 30 coefficients of bi is made using the sympy package [28] and
the scipy package [29] is used to find the root by the Newton-Raphson method. Table 5 gives a summary
of the eigenvalues obtained using this process at a Prandtl of 0.7 and varying Re′. There is no change
in the coefficients from using an expression of 15, 20, and 30 coefficients of bi, but the compute time
increases drastically. For this work, 15 coefficients of bi are used.
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Table 5. Table of root values using 30, 25, 20, and 10 coefficients of bi with a Prandtl
number of 0.7 and varying Re′. Compute time for Y (ȳ) was performed on a single CPU
core. Different digits are highlighted in red.

Coefficients

Re’ 30 25 20 15 10

50 1.66628076 1.66628076 1.66628076 1.66628076 1.66628067

70 1.67366074 1.67366074 1.67366074 1.67366074 1.67366065

100 1.67767423 1.67767423 1.67767423 1.67767423 1.67767413

150 1.67984479 1.67984479 1.67984479 1.67984479 1.67984470

200 1.68060910 1.68060910 1.68060910 1.68060910 1.68060900

300 1.68115649 1.68115649 1.68115649 1.68115649 1.68115639

500 1.68143725 1.68143725 1.68143725 1.68143725 1.68143715

Time [min.] 235.15 17.75 1.59 0.15 0.02
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