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Abstract. This article presents the validation of a modified 6DoF solver which includes the contribution
of particle forces on rigid objects. The solver is an extension of sedFoam, employed for a wide range
of sediment transport applications. The first validation consists in a simple case of a sphere freely
falling in a pure fluid. Then, the same sphere is submerged in a fluid with suspended particles. The
next step involves placing a granular bed under the sphere to study its arrest due to particle-particle
interactions. Lastly, the trajectory of a cylinder immersed in a uniform granular flow is studied to
emphasize the lift and drag forces exerted by the particle phase on the solid object. Results show that
overSedDyMFoam accurately reproduces experimental/numerical measurements successfully capturing
the behavior of solid objects subjected to granular and fluid forces. This implementation is a significant
step towards understanding complex interactions between fluid, particles, and structures.

1. Introduction

Human beings have been shaping nature for thousands of years, indeed, the anthropogenic transfor-
mation of the use of land and water resources has allowed human societies to thrive. Dams, ports, sea
pipelines, dykes and other hydraulic structures have been built to ensure social and economic develop-
ment. However, the structures placed on the seabed frequently contribute to the destruction of important
ecosystems and disturb the equilibrium of the sediment transport. In addition to the environmental im-
pact, human kind objects or structures may also be weakened or damaged due to intensive erosion around
the foundations compromising their integrity. Erosion and sedimentation processes have been studied for
decades but many open questions still remain. Unsurprisingly, fluid-particle-structure interactions (FPSI)
make the problem of sediment transport even more challenging.

A classical FPSI worth highlighting is the scour in the vicinities of a solid object placed on the seabed
induced by waves or currents. Scour around horizontal and vertical cylinders has been largely studied
experimentally under wave and steady currents conditions [1-5]. From the numerical point of view, several
works [6-8] have studied the flow and scour around a cylindrical pile since the early work of [9]. Single-
phase models [6,10-12] were proposed based on the coupling between a hydrodynamic (where RANS
equations are solved) and a morphological model. In these works, the evolution of the scour is treated
as a two-way coupling phenomenon between the deformable bed boundary and the flow field. Although
these works provided invaluable insight to have a better understanding of the interaction between vortex
structures and the sediment erosion, they relied on empirical sediment transport formulas obtained for
steady and uniform flow conditions [13,14] which hinders the study of hydraulic structures where the flow
conditions are usually highly unsteady. In order to overcome this constraint, a few multiphase flow models
have been developed to study the scour process and have a better understanding of the erosion dynamics.
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Multiphase models that treat both fluid and solid phases as a continuum are referred to as Eulerian-
Eulerian (E-E) models. These mesh-based approaches, employing methods like the finite element method
(FEM) and the finite volume method (FVM), have proven to be successful in several sediment transport
applications [7,8,15-17]. Although E-E models are computationally efficient, some physical phenomena at
the grain scale may not be captured without proper closure forms. Therefore, Lagrangian- Lagrangian (L-
L) methods, such as the smooth particle hydrodynamics (SPH-SPH) and SPH-Discrete element method
(SPH-DEM) [18,19] couplings, have been proposed due to their capability in handling large deformations
and deformable boundaries. L-L models are highly accurate due to their ability to track individual
particles within a fluid flow. L-L approaches offer a detailed understanding of particle behavior and
interactions, especially in complex scenarios like sediment transport or fluid-structure interactions (FSI).
However, the accuracy of L-L models often comes at the cost of computational time. A midway alternative
consists in using Eulerian-Lagrangian (E-L) methods. In these approaches, individual sediment particles
are tracked within the fluid flow. Popular models like DEM coupled with Computational Fluid Dynamics
(CFD) fall into this category and are frequently used in engineering problems such as soil erosion, [20],
landslides [21], fluid-solid fluidization [22] or capillarity in porous media [23].

The aforementioned methods have been widely used to study FSI, often setting up solid mechanics
problems using imported stress boundary conditions derived from CFD solutions. Regarding the single-
phase and E-E models, many efforts have been done in coastal and ocean engineering problems without
sediments to study the motion of ships and floating objects [24-27]. Additionally, some Eulerian ap-
proaches are commonly coupled with software for structural dynamics in order to simulate the fluid flow,
the structural forces and the potential structural deformations [28,29]. From the Lagrangian perspective,
similar FST have been investigated to study the deformation of elastic structures [30—-32]. Unfortunately,
very few studies have focused on FPSI where the structure can move or deform. Current approaches
heavily rely on computationally expensive methods using E-L or L-L approaches [33-35], with limited
(none to our knowledge) exploration using more cost-effective methods like E-E or single-phase models.
Indeed, the important progress of E-E and single-phase approaches to study the impact of structures
on the erodible sediment bed [7,8,15-17] is not sufficient because the structural objects are assumed to
be completely static and rigid, which can lead to unrealistic results when analyzing structural stability.
Therefore, it is essential to shift the focus towards understanding the dynamics of structures influenced
by complex sediment transport processes.

OpenFOAM® [36] is an open-source CFD toolbox that can be used to conduct coupled multi-physics
simulations. Despite the large number of physics solvers present and accessible in OpenFOAM®
the fluid-sediment coupling is scarce in the official release. However, due to full access to the source
code, OpenFOAM® can be easily customized. For sediment transport applications, several solvers
have been developed based on OpenFOAM® such as SediFoam [37], scourFoam [38], sediDrift-
Foam [39] or sedFoam [16]. In this work, we will focus on sedFoam which originally stems from the
twoPhaseEulerFoam solver [40]. sedFoam models the sediment phase as a continuum, requiring the
specification of constitutive laws for sediment stresses. We opted for sedFoam as it is actively maintained
by the community and it is the only two-phase continuum approach dedicated to sediment transport ap-
plications. Thanks to the two-phase formulation, physics are captured more naturally with fewer closure
forms compared to single-phase models. Plus, the p(7) rheology already implemented in sedFoam makes
the solver very suitable to study dense granular flows. This conference article aims to introduce and
lay the groundwork for future studies on FPSI within an Eulerian framework, thus, take the first steps
to model the scour phenomenon and subsequent motion of immersed structures with acceptable com-
putational efficiency. The sedFoam solver, as it was written originally, is not capable of dealing with
dynamic objects. In this article, we extend the capability of sedFoam to allocate moving objects and
set a proof of concept for further studies on FPSI. Hence, the originality of the present article lies in the
implementation of equations of motion that take into account the sediment and fluid forces imposed by
the environment acting on the solid objects. By accurately modeling the six degrees of freedom (6DoF),
simulations using the new solver called overSedDyMFoam can provide valuable insights into the behav-
ior of structures subjected to fluid and particle forces. Thus, it can be used to improve the design and
operation of hydraulic structures, bridges or offshore platforms.

Section 2 of the article is dedicated to the mathematical formulation of the two-phase approach. The
implementation of the model and the 6DoF solver is detailed in section 3. Then, a numerical validation
and a few proof of concept examples are presented in section 4. Finally, section 5 gives the conclusions
of the manuscript and draws the perspectives of the work.
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2. Methodology
2.1. Two-phase flow governing equations.
The original formulation of sedFoam proposed by [16] has been modified to account for the mesh

motion. Following [41], the integral forms of the mass continuity equations for the particle and fluid
phase over a moving volume V' bounded by the surface S are written as

gt/vadV—k/Sa(us—ug)’ndSZ()a (1)
;)t/V(l_a)dv+/s(1—a)(uf—ug)~ndS:0. (2)

Here, o, u® and uf are the particle volume fraction, the particle phase velocity and the fluid phase
velocity, respectively. n is the outward normal vector on the surface S, whereas ug stands for the mesh
velocity.

The momentum conservation equations for the particle phase and fluid phase are given by
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where p® is the particle density, pf is the fluid density, p/ is the excess of pore pressure defined as the
difference between the pore pressure and the hydrostatic pressure, p® is the particle pressure, 7° is the
granular shear stress, 77 is the fluid shear stress and K is the permeability of the porous medium. In
this work, Ergun’s approach [42] is used to model the permeability for dense packings while Gidaspow-
Schiller-Naumann model [43] is adopted to deal with particle suspensions.

Although Eqn. 1-Eqn. 4 have a strong similarity to the two-phase mathematical formulation proposed
by [16] to deal with non-moving meshes, this set of equations has to be treated differently due to the
relative advection velocities (uf — ug) and (u® — ug), which, after the discretization of Eqn. 1-Eqn. 4,
are reformulated as cell face relative fluxes. In section 3 we will discuss the computation of absolute and
relative fluxes under topological changes.

2.2. Closure forms.
The fluid phase shear stress is expressed as

T =2pf1eli 8T, (5)
where ) )
Sk = 3 (Vu* + (vu)7") - gtr(vuk), (6)

is the deviatoric and symmetric part of the velocity gradient for the phase k (k = f for the fluid phase
and k = s for the particle phase) and v°/f is the effective viscosity, which according to [44], can be
computed with the phenomenological expression given by

1+ 2.5a (1 - a,ja)l] : (7)

where a4, is the maximum volume concentration set to 0.625 in this work.
Following [16, 45, 46], the total particle phase pressure p® is defined as the sum of a viscous shear
rate-dependent contribution p? and the contribution of enduring contacts p?, as

pelf — ot

p® =p; +Dpe, (8)
where p? is modeled as
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where E is the elastic modulus (chosen to be E = 0.1Pa), ay¢p is the random close packing and a,p, is

the random loose packing. We adopt the value for sphere packings (o, = 0.625 and a;.c, = 0.56).
Depending on the granular flow regime of the numerical simulation different expressions for the
shear rate-dependent pressure can be used [47]. In the grain inertia regime, the inertial number (I =

d||S®||/+/p*/p*) is used to obtain the expression for the shear rate-dependent pressure given by

031a> (10)

- =pfd2|58||2(
Q.

whereas in the viscous regime, the viscous number (I, = p/v7||8%||/p®) is considered to get the shear
rate-dependent pressure expression written as

max — O

2
s _ Ffgs @ 11
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mazx — O
However, as suggested by [48,49], p3, is consistently defined to be the stationary shear-induced pressure
whereas the actual pressure is supposed to converge asymptotically to that value with accumulated strain,
therefore, the equation that governs the space-time development of p? is given by
8p; S S S S S

where K5 is a calibration parameter set to 1.

According to [50,51], the ratio between shear stress and pressure can be scaled by the inertial (or
viscous) number, as

S S SS
7% = p(l)p M7 (13)

where p(I) is the friction coefficient for a certain shear state described in [44] as

M2 — K1

MU%#H+AH+F
where the empirical material constants correspond to the static friction coefficient pq, the saturation
friction coefficient po, and the reference inertial (or viscous) number I,. In this work, we assume p; = 0.4,
wo = 0.7 and I, = 0.3 for the inertial regime whereas the set u; = 0.24, us = 0.39 and I, = 0.01 is
adopted for the viscous regime. In order to have an expression for 7° resembling the definition for the
fluid shear stress, the shear stress due to frictional contacts can be rewritten as

(14)

7% =2p°1° 8%, (15)
where v® is the frictional shear viscosity given by

S

s _ 1(L)p
ve= 172
p* ([S%I12 +A2)
where ), is a regularization parameter from [52] taken equal to A, = 1076 s71.

2.3. 6DoF.

The position and orientation of a rigid body in space can be described using the six degrees of freedom
(6DoF): three for translation and three for rotation. By determining the forces acting on the body, we
can calculate its motion. OpenFOAM® incorporates this process by computing forces on a rigid body
and solving for its motion, thus, mesh changes are required. The 6DoF motion module implemented in
OpenFOAM® has been redesigned to take into account the frictional and particle stresses exerted on a
solid object. The forces acting on a body can be categorized into three distinct types: fluid, particle, and
external forces. Fluid forces refer to forces that the fluid imposes, such as the excess of pore pressure (ff),
buoyancy (fy), and viscous (f,) forces. Particle forces involve frictional shear forces (fgic) and normal
stresses (fp) arising from particle contacts. External forces, on the other hand, include forces like gravity
(fg). These forces are given by
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These forces are collectively denoted as F, while the combined moments are referred to as M. To
determine the body’s motion, we must calculate both the acceleration a and the angular acceleration ~.
Accelerations are related to the moments and forces, as

F =fp + £, + f, + fvic + b + fz = ma, (23)

M =11, (24)

where m and I are the mass and inertia of the object, respectively. When we integrate the translational
acceleration over a specific time interval, we can obtain the current angular velocity w¢ia¢ and linear
velocity vi4+at given by

t+At
Wi AL = / adt = w; + YA, (25)
t

t+At
Vi+At = / adt = V¢ + aAt. (26)
t

Using wiy+at and viyag, we can calculate the rotation and the distance covered since the previous time
interval.

3. Implementation

The PIMPLE algorithm, which combines the PISO with the SIMPLE algorithm, is used for overSed-
DyMFoam. The numerical steps required for the PIMPLE algorithm are outlined in Fig. 1. Initially, the
mesh, configuration, and properties of fluid and solid phase are read and initialized. In each time step, the
mesh is modified based on the solution of the 6DoF, followed by the resolution of the sediment transport
equation and the closure forms for the sediment and fluid stresses. The next step includes solving the
pressure equation. The final stage of the PIMPLE algorithm incorporates the turbulent models. More
details on the turbulent models can be found in [16], the publication associated with the initial release
of sedFoam. While various turbulent models are available in sedFoam and can influence the stresses
acting on a given solid object, this article primarily focus on integrating granular stresses within the
6DoF framework and emphasize the impact of the granular phase on solid bodies or structures, thus,
in this benchmark we focus on simple cases under the laminar regime. Finally, this loop is repeated
nOuterCorrectors times.
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Figure 1. Flowchart of the overSedDyMFoam solver.

As mentioned before, overSedDyMFoam is an extension of the solver sedFoam introduced by [16]. We

encourage the reader to have a look at the code and documentation of sedFoam available for download
from 'GitHub. The scope of the present article is not to discuss the closure forms and algorithms used
in sedFoam, instead, we will focus on the implementation of libraries and code modifications that allow
overSedDyMFoam to deal with moving objects. Before jumping into the details, it is worth presenting
the two types of dynamic meshes considered for this work:

e Overset mesh: The basic principle of overset method is to construct two disconnected meshes,

the background mesh, which remains static, and the overset mesh, which displaces relative to
the background mesh (see Fig. 2a). The overset method is suitable for objects with a large
range of motion. Essentially, it tackles the governing equations independently on both meshes.
Within the background grid, elements that correspond to the interior of the overset domain are
labeled as holes and excluded from calculations. Instead, boundary values of the overset mesh
are interpolated into the background mesh. The same process is done for the overset domain.
Consequently, at each time step, cells in both the background and overset meshes are categorized
as calculated (solved through equations), interpolated (values are computed by interpolation from
nearby elements in the opposite domain), or holes (computation is excluded from these cells).
Fig. 2 illustrates in gray the calculated cells while pale green is denoting the hole region. Each
mesh includes interpolated cells: in Fig. 2b we observe that those neighboring the hole of the
overset mesh belong to the background mesh and their donors are from overset mesh. While
the interpolated cells belonging to the overset mesh are found at the boundary of the overset
mesh and their donors are from the background mesh as shown in Fig. 2c. These meshes are
independent and the coupling is achieved through interpolation. Various interpolation methods
are available in OpenFOAM® (cellVolumeWeight, inverseDistance, leastSquares,
and trackingInverseDistance). In this work, we will adopt the inverseDistance ap-
proach. It is worth noting that implementation of the overset framework in OpenFOAM® and
a comprehensive explanation of the inverseDistance method can be found in [53].
Morphing mesh: This type of mesh can deform but the connectivity between the cells remains
unchanged. The mesh deformation is performed by applying a different displacement to each
mesh point. Mesh deformation will introduce relative motion between mesh points, which will
in turn distort mesh cells and modify the mesh in an inhomogeneous way. This usually leads to
high distortions, especially for large motions, which reduces the mesh quality.

The new file overSedDyMFoam. C, located at $/solvers/overSedDymFoam/overSedDyMFoam.C,

includes several functions and classes that are worth highlighting before breaking down the details of the

code:

Ihttps://github.com/SedFoam/SedFoam
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Figure 2. a) Background and overset mesh overlapping, b) hole cells in pale green,
calculated cells in gray and interpolated cells in light yellow defined for the background
mesh, and ¢) calculated cells in gray and interpolated cells in light yellow defined for the
overset mesh.

e The mesh.update () calls the mesh motion library to calculate the new position of points and
updates the mesh. The mesh update may need the quantities or dependent variables to be
remapped on the new mesh or the mesh created after moving the node points of the mesh.

e correctPhiSedFaceMask.H, found at $/solvers/overSedDymFoam/correctPhiSed-
FaceMask.H, updates the surface velocity field and fluxes:

1 (// Zero Uf on old faceMask (Hole-Interpolated faces)
2 | Ufa = faceMaskOld;
3 | Ufb x= faceMaskO0ld;
4 | // Update Uf and phi on new Calculated-Interpolated faces
5 |Ufa += (l-faceMaskOld) xfvc::interpolate (Ua);
6 |Ufb += (l-faceMaskOld)«fvc::interpolate (Ub);
7 | phia = mesh.Sf() & Ufa;
8 | phib = mesh.Sf() & Ufb;
9 | phia *= faceMask;
10 | phib *= faceMask;
N\

here, a mask for the faces (faceMask) is created by interpolating cellMask. cellMask is
a field that assumes 0 for hole cells and 1 elsewhere (see Fig. 2). Likewise, faceMaskOld is
generated from the faceMask corresponding to the previous time step. Both faceMask01ld
and faceMask are used to set zero velocity at the faces of hole cells and update the surface
velocities at the calculated-interpolated faces. interpolate function is used to transform cell-
center quantities, such as the particle u® (Ua in the code) and fluid velocities uf (Ub in the code),
to face centers quantities (Ufa and Ufb) respectively. It is worth mentioning that correct—
PhiSedFaceMask.H is only used for the overset mesh approach.

e fvc::makeAbsolute (phia, Ua) and fvc::makeAbsolute (phib, Ub). This function
adds the flux caused by the movement of the mesh to the flux across the mesh control volume
boundaries. This gives the absolute flux relative to a fixed reference frame.

e fvc::makeRelative (phia, Ua) and fvc::makeRelative (phib, Ub) routines perform
the opposite operation of fvc: :makeAbsolute (). Hence, this function subtracts the flux of
the mesh at every cell face, leaving the flux at the cell faces that is relative to the moving reference
frame.

e correctPhiSed.H is found at $/solvers/overSedDymFoam/correctPhiSed.H and it is
called when correctPhi is set to True in the fvSolution dictionary. If the mesh is mov-
ing, the fields must be mapped from the old to the new mesh, which may introduce interpolation
errors. Therefore, correctPhiSed.H is included to mitigate the errors and satisfy the mass con-
servation. In the correctPhised.H file, the PIMPLE algorithm’s pressure corrector equation
is solved a specified number of times indicated by the variable nNonOrthogonalCorrectors,
defined in fvSolution. The objective of this process is to derive a pressure corrector, which
is subsequently utilized to ensure that the fluxes across the mesh cells satisfy the principle of
continuity. This correction is carried out before the main PIMPLE loop. correctPhiSed.H is
only used for the overset mesh approach.

All the previous functions are crucial to handle dynamic meshes. Although we are not going to describe
line by line overSedDyMFoam.C’s file, it is worth highlighting the part where fluxes are recalculated
after mesh changes:
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bool changed = mesh.update();

if (changed)

{
Info << "MESH CHANGED" << endl;
#include "setCellMask.H"
#include "setInterpolatedCells.H"
#include "correctPhiSedFaceMask.H"
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;

fvc::makeRelative (phia, Ua);
fvc::makeRelative (phib, Ub);

surfaceScalarField alphaf = fvc::interpolate (alpha);
surfaceScalarField betaf = scalar(1.0) - alphaf;
phi = alphafxphia + betafxphib;

// Calculate absolute flux from the mapped surface velocity
if (correctPhi)
{

#include "correctPhiSed.H"

}

First of all, mesh.update () function is called. If the mesh is moving, the scalar field ce11Mask is ap-
plied to the cells. Zero values correspond to holes and 1 elsewhere. Then, interpolatedCells assigns0
values to the interpolated cells, otherwise cells are set to 1. Right after, correctPhiSedFaceMask.H is
called in order to correct the fluxes in the solver using the new velocity values. fvc: :makeRelative ()
is used to make the sediment ®® (phia in the code) and fluid ®” (phib in the code) fluxes relative
to the mesh motion. Then, the mixture flux (phi) is computed before the flux correction function
(correctPhiSed.H) is called to ensure continuity. Here, the function interpolate is called to trans-
form the solid volume fraction field alpha (stored as cell-center values) to alphaf (stored as face-center
values).

Regarding the resolution of the mass conservation (Eqn. 1), terms are rewritten as function of the
relative velocity between the sediment and the fluid phase to obtain an hyperbolic equation with higher
numerical robustness. Thus, Eqn. 1 becomes

g/ adV—i—/a(um—ug)-ndS—/—ura(l—a)~ndS:0, (27)
ot Jv s s

where u™ is the mixture velocity that can be determined as

u™ = au® + (1 — a)uf, (28)

and the relative velocity u® is defined as the difference between the sediment and fluid phase, as

r

u' =u® —uf. (29)

It is worth noticing that the first convective term in Eqn. 27 is written relative to the mesh velocity.
Thus, the relative motion flux for the mixture velocity is considered as

® = (u™ - n)dS — (ug - n)dS. (30)

On the contrary, the second convective term in Eqn. 27 is the absolute flux corresponding to relative
velocity between the two phases given by

P =" — PP, (31)
where ®? is the solid phase flux computed as ®* = (u® - n)dS and the ®° is the fluid phase flux
computed as ®° = (uf - n)dS.
The resolution of the mass conservation equation is performed in alphaEgn.H, located at $/solver-
s/overSedDymFoam/alphaEqgn.H, and is written as follows:
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word scheme ("div (phi, alpha)");
word schemer ("div (phir, alpha)");

surfaceScalarField phic("phic", phi); // phi is relative
fvc: :makeAbsolute (phia, Ua);

fvc::makeAbsolute (phib, Ub);

surfaceScalarField phir ("phir", phia - phib);

for (int acorr=0; acorr<nAlphaCorr; acorr+t)

{
fvScalarMatrix alphaEgn

(
fvm: :ddt (alpha)
+ fvm::div (phic, alpha, scheme)
+ fvm::div(-fvc::flux(-phir, (l1.0-alpha), schemer), alpha, schemer)
)

alphaEgn.relax();
alphaEgn.solve () ;

alpha.min (alphaMax) ;
alpha.max (0) ;

alpha %= cellMask;
alpha.correctBoundaryConditions () ;

beta = (scalar(1.0) - alpha);

rho = alphaxrhoa + betaxrhob;

=

The next step of the PIMPLE loop consists in solving the pressure equation and correcting the ve-
locities. Files UEgn.H and pEgn.H, found at $/solvers/overSedDymFoam/pU/, contain the part
of the code for the momentum and the pressure equation, respectively. The formulation of UEgn.H and
pEan.H for the overSedDymFoam solver is almost the same as for a fixed grid. The main changes are
listed below:

e The function interpolatedFaces.H is called if massFluxInterpolation found in fvSo—
lution is set to yes. This function contributes to correct the mass flux imbalance produced by
the overset interpolation. interpolatedFaces.H is only used for the overset mesh approach.

e The resolved velocity field is multiplied by the field cel1Mask so the velocity is set to zero if
there is hole present. This only applies for the overset mesh approach.

3.1. 6DoF implementation.

In OpenFOAM® forces on a rigid object need to be extracted so the velocity and the displacement
for a time step can be calculated. In particular, SFOAM_SRC/functionObjects/forces/forces/-
forces.C function is used to compute the forces and moments by integrating the pressure and viscous
forces over a given list of patches. In order to adapt the 6DoF to account for the particle stresses exerted
on a rigid body, forces.C file is renamed as forcesSed.C and modified as:

vectorField £fN(rho (p)*Sfb[patchi]* (p_rbgh.boundaryField() [patchi]- pRef));
vectorField fNsolid(rho (p)*Sfb[patchi]* (pS.boundaryField() [patchi] - pRef)

vectorField fT(Sfb[patchi] & devRhoReffb[patchil]);

where

devRhoReff = —muEffxdev (twoSymm (fvc::grad(Ub)))-muFraxdev (twoSymm (fvc::grad(Ua)));
const volSymmTensorField: :Boundary& devRhoReffb = devRhoReff ().boundaryField();

so the following contributions are computed for the chosen patches:
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Table 1. Geometrical and physical properties used to reproduce the falling sphere ex-
periment [54].

Parameter Value
0% 1120kg/m?
of 970kg/m3
vf 3.845-107*m?/s
Sphere diameter (D) 0.015m
Domain diameter for the morphing mesh (D) 6.66D
Box dimensions for the overset mesh (I x I x [) 25D x 2.5D x 2.5D
Background mesh dimensions of the overset approach (L x L x L) | 6.66D x 6.66D x 6.66D
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Figure 3. Geometrical domain for the a) morphing and b) overset meshes.

the excess of fluid pressure pf (p_rbgh in the code)

the particle pressure p® (ps in the code)

the fluid viscous contribution 7/ (-muEff*dev (twoSymm (fvc: :grad (Ub))) in the code)
the frictional contribution 7% (-muFra*dev (twoSymm (fvc: :grad(Ua))) in the code)

Similarly, a new library for the motion solver is created. In our case, we name it SFOAM_SRC/sixDoF -
RigidBodyMotion to sixDoFRigidBodyMotionSedFoam. The only difference between the original
and the new library lies on the list of forces that are called to compute the mesh motion. Thus, sixDoF-
RigidBodyMotionSedFoam uses the forces retrieved from forcesSed.C. It is important noting that
for a numerical simulation we need to specify the motion solver (sixDoFRigidBodyMotion) and im-
port the library for the motion solver (sixDoFRigidBodyMotionSedFoam). This piece of information
must be included in the dynamicMeshDict dictionary such as:

motionSolverLibs (sixDoFRigidBodyMotionSedFoam) ;

motionSolver sixDoFRigidBodyMotion;

4. 6DoF numerical cases

The scope of this section is to validate the modified 6DoF solver that includes the contribution of
sediment forces on rigid objects. Although the overSedDymFoam intends to be a solver capable to
reproduce complex fluid-sediment-structure interactions such as deep burial of objects in the seabed,
the motion of intruders under bedload transport or the self-burial process of rigid objects under wave-
induced conditions, this section starts presenting a very simple case and more ingredients are added
throughout the article to illustrate the potential capabilities of overSedDymFoam. The starting point of
this section is the free fall of a sphere immersed in a pure Newtonian fluid. Then, the same configuration
is considered except that the sphere is submerged in a fluid with particles in suspension. The next step
consists of placing a compacted sediment bed under the sphere to bring the object to a halt due to the
particle-particle interactions. The last part of this section is restricted to a 2D configuration to reduce
the computational cost. In particular, the trajectory of a cylinder subjected to a uniform granular flow is
studied. These numerical cases and the scripts for post-processing can be found in $/tutorialsDyM.
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Figure 4. Sphere a) trajectory and b) velocity evolution using different solvers and
concentrations using a morphing mesh. Sphere ¢) trajectory and d) velocity evolution
using different concentrations using an overset mesh.

4.1. Falling sphere in pure fluid.

Our first numerical simulation to verify the implementation of the 6DoF consists of a free fall of a sphere
with a diameter D = 15mm settling in silicon oil. The experimental setting consists in a rectangular box
of 100 x 100 x 160mm. In the numerical domain we adopt two different meshes depending on the dynamic
mesh approach. For the morphing mesh, a spherical mesh is considered whereas a box mesh is assumed
for the overset method. The input parameters have been chosen to reproduce the experiments of a settling
sphere at Reynolds number equal to Re = W D /vf = 1.5 [54], where W is the terminal velocity of the
sphere. The geometrical and physical parameters are summarized in Tab. 1 and the numerical set-up is
displayed in Fig. 3. The numerical cases are located at $/tutorialsDyM/FallingSphereMorphing
and $/tutorialsDyM/FallingSphereOverset. This benchmark is inspired by the 2online tutorial
of a settling sphere of OpenFOAM®

In Fig. 4 we observe the temporal evolution of the sphere velocity which tends towards its terminal
settling value. The evolution of the vertical position and velocity using overSedDymFoam is in very good
agreement with the experimental measurements [54]. Additionally, a simulation using overPimpleDyM-
Foan solver from the ESI version of OpenFOAM® is also included in Fig. 4. The lack of discrepancies
between overPimpleDyMFoam and overSedDymFoam, in addition to the agreement with the experi-
mental data, support the correct implementation of the 6DoF capability in overSedDymFoam. Fig. 4
shows mild differences between the overset and the morphing mesh results suggesting that the ovser-
set approach needs to be further refined or/and improve the interpolation method to smooth the path
displayed in Fig. 4. On the other hand, the morphing mesh is not able to predict a constant terminal

2https://Wiki.openfoam.com/Settling,Sphere,by,MichaeLAlletto
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Table 2. Geometrical and physical properties used to reproduce the impact of a spherical

intruder on a granular bed.

Parameter Value
ps 2650kg/m3>
of 1000kg/m?
PO 1141kg/m3
vf 1-107%m?/s
Grain diameter (d) 10mm
Sphere diameter (D) 0.015m
Domain diameter for the morphing mesh (D) 13.3D
Granular flow regime Viscous

velocity because large displacements compromise the accuracy of the results. It is worth mentioning that
shifting the curves a certain amount of time leads to a better fitting with the experimental data, these
results and discussion are found in appendix B.1. Furthermore, a mesh convergence analysis is also found
in appendix B.1.

4.2. Falling sphere in a fluid with a sediment suspension.

In this scenario we want to extend the results by reproducing, numerically, the falling sphere in
a fluid with the presence of sediments in suspension. For this numerical set-up, the content of sedi-
ments is set to 5%, the particles are neutrally buoyant (i.e. same density as the fluid) with a mean
diameter of d = 0.29mm and the Gidaspow-Schiller-Naumann drag model is considered. The numerical
cases are located at $/tutorialsDyM/FallingSphereSuspensionMorphingand $/tutorials-
DyM/FallingSphereSuspensionOverset. For a sphere suspended in a mixture of solid particles,
the settling velocity is lower than its terminal velocity in pure fluid [55,56]. This is due to the relative
position of particles and their hydrodynamic interactions that create a hindering effect. This effect can
be simulated by increasing the effective viscosity. Indeed, according to Eqn. 7, the effective viscosity is
proportional to the solid volume fraction, therefore, the sphere falls with lower acceleration and reaches
a lower terminal velocity as shown in Fig. 4. Similar to the case of the falling sphere in a pure fluid,
the trajectory curves for the overset and morphing mesh follow slightly different paths. Nonetheless, the
gap between the « = 0 and o = 0.05 trajectory curves remains similar regardless of the dynamic mesh
approach.

4.3. Resting sphere.

This section tests the ability of overSedDymFoam to capture the particle pressure and frictional
stresses on a rigid body. Granular material at equilibrium acts as a solid-like state. However, according
to [57], the impact of a solid object may cause the soil to behave like a fluid. Unlike impacting a liquid,
the object must overcome a minimum yield stress to penetrate the granular bed. The value of this
yield stress depends on how the material is packed. Granular materials are also able to dissipate energy
effectively through grain-grain interactions, a process slightly different from the way liquids dissipate
energy through viscosity. Numerous studies [57-59] have investigated the underlying physics involved
in objects penetrating granular beds. Certain studies [60-62] have examined the upward drag force
that an object experiences while it penetrates a granular bed. Whereas other works [63-65] geared the
effort to gain insight into force-chains networks that are originated during the impact of the object.
Indeed, the intensity, orientation, evolution and other features of particle-particle and particle-object
interactions inside the granular bed are crucial to understand the behavior of dense granular systems that
undergo jamming, shear banding or cratering [58,66,67]. Although previous works provide fundamental
explanations to understand the microscopic processes responsible for dissipating kinetic energy, and the
dynamics of a rigid object penetrating a granular bed, the scope of the present article is limited to
illustrate the ability of the model to numerically reproduce the impact and arrest of a sphere falling on
a granular bed.

In this simulation, only the morphing mesh is considered. The computational domain is assumed
to be a spherical domain having a diameter ® = 13.3D. Ergun drag model is adopted to model the
permeability. As shown in Fig. 6a, a horizontal sediment bed is included in the numerical simulation.
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Figure 5. Sphere a) trajectory and b) velocity obtained with the morphing mesh ap-
proach. ¢) Plot of the total forces and each contribution exerted on the sphere from the
morphing mesh approach.

The bed interface is located at a distance of 0.84D from the lowest point of the sphere. The rest of
the physical and geometrical parameters are summarized in Tab. 2. The numerical case is located at
$/tutorialsDyM/RestingSphereMorphing and a mesh convergence test is presented in appendix
B.3.

From the starting point (¢ = 0s), the object speeds up and the fluid pressure and viscosity forces act
against gravity (see fluid pressure and viscous contribution build up in Fig. 5¢). At ¢ = 0.19s the spherical
intruder touches the sediment bed, thus, contact and frictional forces start developing to counterbalance
the weight of the intruder slowing down the velocity of the intruder (see the vertical velocity reduction
in Fig. 5b and the changes in the velocity field of Fig. 6b). The particle and frictional stresses fields
illustrated in Fig. 6¢ and Fig. 6d at ¢ = 0.22s evidence the fact that the particle forces developing
beneath the intruder are strong enough to bring the spherical object to arrest. Although no data has
been used to validate this numerical case, it is worth mentioning that a similar behavior has been reported
in experimental and numerical approaches with similar configurations in terms of networks of contact
forces [61,65,67]. The object stops when the particle forces are in equilibrium with the gravitational
force. Indeed, as shown in Fig. 5b and Fig. 5c¢, after ¢ > 0.26s, the net force and the intruder velocity are
zero, thus, the intruder remains static and partially buried as shown in the last row (¢t = 0.31s) of Fig. 6.

4.4. Uniform granular flow around a cylinder.

Previous numerical cases focused on the hydrodynamic forces and frictional/particle forces for sedi-
ments at rest. In this section we evaluate the response of an object subjected to a granular flow. This
configuration is particularly important for studying grain segregation. When a bidisperse granular mate-
rial is submitted to a shear flow, it often exhibits segregation phenomena [68,69]: large and small particles
have a tendency to migrate in different regions. This tendency to segregate is a major issue in many
industrial applications involving mixing processes, and in many geophysical flows such as deposits of rock
avalanches, landslides or grain size sorting in sediment transport. Another challenging situation is the
burial of large objects in the seafloor such as unexploded munitions which are a threat for human beings,
coastal wildlife and flora. An archetypal situation to understand this problem is the dense granular flow
of small particles around a large solid body such as a cylinder or a sphere. Lift and drag forces are
generated on rigid bodies immersed in moving granular media. However, these forces are not as well
understood as in Newtonian fluids. Drag force induced on objects in granular media has been studied
largely. On the contrary, little progress has been made to understand the lift force. Both [70] and [71]
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Figure 6. a) Sphere position and interface. The orange rectangle indicates the detailed
area of the b) fluid velocity field, ¢) particle pressure field and d) frictional shear stress
field around the sphere displayed for ¢ = 0.0s, t = 0.13s, t = 0.22s and ¢t = 0.31s. The
black isoline indicates the interface at o = 0.3.

reported that symmetrical objects, such as a cylinder, may experience lift. Moreover, the authors pointed
out the pressure gradient induced by gravity could be the source of this asymmetrical force.

In this subsection we analyze the stresses and the trajectory of an intruder immersed in a uniform
granular flow. In order to reduce the computational cost, a cylinder (a 2D object in OpenFOAM®) is
used instead of the spherical intruder employed in previous numerical cases. Inspired by the work of [71],
where lift and drag forces on a cylinder were measured under a granular flow, we adopt a similar set-up
as depicted in Fig. 7. More specifically, a granular packing is considered, then, the bottom plate is set to
a prescribed constant velocity that induces a uniform granular flow above the bottom plate. A cylinder is
placed in the granular medium distorting the flow patterns. As illustrated in Fig. 7, a constant horizontal
velocity of u, = 0.01m/s is prescribed at the bottom to generate the uniform granular flow. The initial
velocity field is set to u, = 0.0lm/s as well. DEM simulations performed using the open-source code
YADE [72] are also presented to test the accuracy of overSedDymFoam. In YADE, the solid particles
are spherical and monodisperse. The interactions between them are elastic-plastic, with normal and
tangential stiffness k, and ks, and Coulomb friction coefficient ps. Newton’s second law of motion is
integrated explicitly through iterative time stepping (implementation details can be found in [72]). The
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Figure 7. Numerical set-up to model the segregation of a large intruder immersed in a
granular flow.

Table 3. Geometrical and physical properties used to reproduce the granular flow
around a cylinder with sedFoam (and overSedDymFoam) and YADE.

Parameter sedFoam YADE
pe 2500kg/m?  2500kg/m3
p! 50kg/m?3 -
vf 1.5-107°m?/s -
Grain diameter (d) 0.0015m 0.0015m
Cylinder diameter (D) 3.3d 3.3d
Cylinder depth (h) 5.8D 5.8D
Domain depth (H) 39d 39d
Domain length (L) 85d 1004
Elastic modulus (E) 0.1Pa 50000Pa
Poisson ratio (v) - 0.4
Friction coefficient (1) 0.4 0.4
Drag model (K) Ergun -
Granular flow regime Inertial -

parameters that have been employed are summarized in Tab. 3. It is worth noting that DEM simulations
assume a dry granular material, however, the density ratio using overSedDymF oam is slightly different to
avoid numerical errors. Plus, in YADE simulations, a rigid horizontal layer of cohesive particles is placed
at the top to avoid deformations above the granular packing induced by the intruder. The numerical case
is located at $/tutorialsDyM/2DCylinderUniformGranularFlow.

Before testing the capability of dynamic meshes, a first numerical comparison with a static cylinder
is presented to compare the stress and velocity fields between DEM and sedFoam simulations. In this
subsection we are interested in visualizing how the granular flow (uniform far from the object) is modified
by the presence of a static cylinder and what is the stress distribution around the cylinder that induce
both drag and lift forces. Fig. 8 illustrates the velocity and stress fields around the cylinder obtained with
sedFoam and YADE. The words Slip and No slip in Fig. 8 refer to the boundary conditions applied to
the solid velocity at the cylinder surface. No slip condition assumes u® = 0 meaning that the particles on
the cylinder are sticking to the wall and have zero relative velocity at the interface. The Slip condition,
on the other hand, assumes sliding particles, allowing for a non-zero tangential velocity at the interface.
The choice between Slip and No slip conditions depends on the physical characteristics of the problem.
In most cases, the No slip condition is appropriate for simulating pure fluid flows over solid surfaces.
However, in granular flow applications, particles may roll or be dragged on a solid boundary. Therefore,
we explore the consequences of these two conditions for the solid velocity applied on the surface of the
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Figure 8. Sediment velocity, particle pressure and frictional shear stress fields around
the cylinder modeled with a) YADE, b) sedFoam with Slip condition around the cylinder
and ¢) sedFoam with No slip condition around the cylinder.

cylinder. In order to display the averaged fields resulting from the discrete YADE simulations in a
structured grid, each quantity ¥ has been spatially averaged at point ¢ as

N
U, = Ze—\Tj/d\Z S, (32)
j=1

where 7; is the distance between the element j and the grid point ¢. IV is the number of total discrete
elements. Then, U; is averaged temporally as

1 T
U, = ?;\If (33)

Fig. 8 evidences a high pressure region in front of the object and a low pressure region at the down-
stream side. The distribution of pressure is not completely symmetrical with respect to the horizontal
line. Indeed, Fig. 8 shows the high pressure area is slightly shifted downward and the low pressure is
localized slightly upward. According to [71], this asymmetry is the origin of the lift force on the cylinder.
The frictional shear stresses in Fig. 8 evidence the sheared regions are oriented around 30 degrees in
good agreement with [71] results. Additionally, the asymmetric patterns of the frictional shear stress are
also manifested in Fig. 8: the shear stress regions located upstream are much higher than downstream.
The radial stress distribution around the cylinder is illustrated in Fig. 9 where the normal stress (o%;)
becomes higher in the bottom front quarter (peak between 20° and 30°) and lower at the upper back part
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Figure 9. Radial distribution of normal stresses on the surface of the cylinder as a
function of the angle 6.

of the cylinder (—180° < 6 < —90° in Fig. 9). Both Fig. 8 and Fig. 9 suggest that qualitative agreement
is found between [71], YADE and sedFoam results.

The presence of a pressure gradient significantly affects the movement of grains around the cylinder
as depicted in the first two rows of Fig. 8. According to [71], in the absence of a pressure gradient, when
the grains would reach the front of the cylinder, they would shift either upwards or downwards, accel-
erate above and below the cylinder, and eventually return to the cylinder’s wake downstream exhibiting
symmetry in the upward and downward directions. However, in the presence of a pressure gradient, the
displacement of grains is significantly disrupted, with grains preferring to pass above the cylinder, where
the pressure is lower, rather than below it (see the vertical velocities being lower below the cylinder
compared to above it in the second row of Fig. 8). Consequently, the presence of a pressure gradient not
only alters the local pressure but also appears to have a significant effect on the flow of grains. Overall,
Fig. 8 show reasonable agreement between the DEM and sedFoam results. Fig. 8 shows that the choice
of Slip/ No-slip has an important effect on sedFoam results. According to Fig. 8, the No slip condition on
the cylinder provides a better description of the velocity field, however the solid pressure is overpredicted
in front of the cylinder. Indeed, Fig. 9 shows that the DEM normal stress peak (% = 66) is better

modeled with the Slip condition with a normal stress peak of ;Té'd = 78. Regarding the asymmetry of
the normal stresses (0% ) around the cylinder, Fig. 9 shows that sedFoam peaks are shifted around 20°
compared to the 30° shift of the YADE peak.

The frictional shear stress field displayed in Fig. 8¢ suggests that the No slip condition is probably not
appropriate to study this problem as it is remarkably different from the YADE solution. On the contrary,
the Slip condition, where particles can roll and move around the cylindrical boundary, provides a similar
distribution of the shear stress field (see Fig. 8b) but with lower magnitude than the YADE results. Pre-
vious discrepancies, such as higher shear stress values in the DEM, the degree of asymmetry or the minor
differences in flow patterns, could be attributed to the inherent averaging process of DEM simulations,
the choice of the particle velocity boundary condition of the cylinder surface, and the rheological model
adopted within sedFoam. The sensitivity of the continuum model results to the choice of the boundary
condition for the granular phase (Slip/No slip) confirms that more work needs to be done to accurately
predict granular flows in this configuration. Beyond the boundary condition, the rheological model also
needs improvements in order to better predict the granular flow around a static cylinder. This question is
beyond the scope of the present study, our main goal here is to verify the qualitative behavior of the FPSI
model in the two extreme situations when the fluid-particle forces acting on the object are dominated by
the fluid forces or by the granular forces.

At this point we can remove the motion constraint of the object and track the vertical trajectory
of the cylinder induced by the lift force generated from the asymmetrical particle stress field discussed
previously. Fig. 10 shows the evolution of the large intruder during the overSedDymFoam and YADE
simulations. Four series of samples prepared with YADE are plotted in Fig. 10a to take into account the
stochastic nature due to local grain and/or anisotropic effects. An average YADE curve of the four series
is also included in Fig. 10a. The main difference between YADE and overSedDymFoam is the fluctuating
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Figure 10. a) Vertical position of the intruder as a function of time. b) YADE and c¢)
overSedDymFoam cylinder position at the initial time (t=0s) and t=6s. The red circle
indicates the original position of the intruder.

path of the YADE series compared to the monotonic trajectory predicted by overSedDymFoam. This
behavior is not unexpected due to the nature of the DEM simulations where local effects may modify
the trajectory. We also observe that the slope of the trajectory obtained with overSedDymFoam is
slightly lower than the DEM one. Although this differences could probably be attributed to the chosen
granular rheology and the particle velocity condition applied on the cylinder, it is worth highlighting the
remarkable similar path in terms of time scale and average upward motion shown in Fig. 106 and Fig. 10c.

5. Conclusion

The implementation of the 6DoF library into the sedFoam code has been successfully accomplished.
As far as OpenFOAM® development is concerned, the main novelty of this work is that, in addition
to the fluid stresses, the contribution of granular stresses acting on a solid object is also considered to
determine the velocity and motion of a solid object. First, the main modifications to the code to enable
dynamic meshes were presented. Then, the specificities of the 6DoF library were discussed. Following
the code modifications, the numerical model was tested using a validation case where no particles were
present. Additionally, overSedDyMFoam was utilized to investigate the effects of sediment stresses in
three distinct scenarios. These numerical cases encompassed a dilute suspension (involving a falling
sphere immersed in a dilute suspension), a dense granular medium (studying the lift force on a cylinder
immersed in a uniform dense granular flow), and a situation where the sphere interacted with the interface
between the granular medium and the pure fluid phase.

The results obtained from these tests demonstrated that our proof-of-concept implementation suc-
cessfully replicates the dynamics of solid objects subjected to both granular and fluid forces. This is
a very important contribution to further address major scientific open-questions such as scour erosion
around pipelines and communication cables, piping or burial of unexploded ordnances. Naturally, these
are research perspectives that are beyond the scope of the present contribution.

6. Data reproducibility

Numerical cases presented in the article and post-processing scripts are located at $/tutorialsDyM.
In addition to the Case files and source code found in the file system of the OpenFOAM® Journal, the



Moving objects in a two-phase Eulerian model for sediment transport 97

version of the SedFoam solver used to reproduce the main figures of the article is available on 3Zenodo
with the following DOI: https://doi.org/10.5281/zenodo.5095242. Moreover, results, the cases for the
merge convergence study and post-process scripts are available for download on *Zenodo.

Furthermore, the user can also follow the tutorials at ®https://sedfoam.github.io/sedfoam/ to better
understand the main commands and files used to generate the numerical cases of the present article.
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Appendix A. Summary of numerical parameters

The following table summarizes the numerical schemes, correctors and other numerical parameters
used in the previous numerical simulations.

Table 4. Numerical inputs, loops and schemes used in the numerical simulations.

Falling sphere Resting sphere | Cylinder
Parameter Overset = Morphing Morihilr)lg M};rphing
correctPhi false true true true
nOuterCorrectors 11 4 6 2
nCorrectors 1 7 3 4
nNonOrthogonalCorrectors 0 3 4 6
Time discretization Euler
Gradient term discretization Gauss linear
Divergence operators Gauss linear
Laplacian operator Gauss linear corrected
oversetInterpolation inverseDistance | - | inverseDistance | -
6DoF solver Newmark

Appendix B. Merge convergence studies

Ensuring accuracy and efficiency in computational simulations relies significantly on selecting an ap-
propriate mesh size. The convergence tests presented in this appendix explore the impact of different
grid sizes, aiming to find a balance between computational resources and numerical precision.

The time step, At, is adjusted automatically based on two Courant numbers, one related to the local
flow velocity and the local grid size, written as

1

and one related to the relative velocity, written as

1 a b
co:z—vczf]cbf—@fmt, (35)

3https://zenodo.org/records/5095242
4https://zenodo.org/records/ 10967984
Shttps:/ /sedfoam.github.io/sedfoam/
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where the subscript f denotes the cell faces and V. corresponds to the volume of the cell. The most
limiting time step is used as the criterion for setting the adjustable time step. In this work, the Courant
number is set to 0.01.

B.1. Falling sphere in pure fluid - Morphing approach.

This section is centered on the mesh convergence analysis of the falling sphere scenario using the
morphing mesh. Before we start the mesh study, it is worth mentioning that a more accurate fit can
be achieved by shifting the curves. As illustrated in Fig. 11, a mere 0.035-second delay aligns the
numerical curve more accurately with the experimental data. Although this delay could be originated
from experimental inaccuracies, for the main content of the manuscript and subsection B.2, we maintain
the uncorrected solution.
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a | T
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B B e e T
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Figure 11. Sphere a) trajectory and b) velocity evolution using a morphing mesh. Con-
tinuous line corresponds to the curves without any modification, whereas the dashed
lines refer to the same curves shifted by 0.035 seconds.

Regarding the mesh convergence study, both Fig. 12 and Tab. 5 depict a considerable decrease in error
as the mesh is refined. The error displayed in Fig. 12b and Fig. 12d is computed as

exrp sim
v — ot

Error = TP
v |

x 100, (36)
where v;"? and v;"™ denote the vertical velocities of the sphere measured by [54] and predicted by
overSedDyMFoam, respectively, evaluated at three distinct time instances: A - ¢ = 0.125s, B-t = 0.27s
and C - t = 0.54s.

Yet, this refinement notably escalates the computational time without yielding substantial benefits for
meshes more refined than M2 as evidenced by the slight reduction of root-mean-square error (RMSE)
reported in Tab. 5.

Table 5. Number of cells, CPU times and root-mean-square error (RMSE) for different
mesh resolutions to model the falling sphere in pure fluid with the morphing approach.
The RMSE is computed for both corrected and uncorrected initial times.

Number of cells | CPU time [h] | RMSE | RMSE corrected
Mo 768 1.8 0.0028 0.0013
M1 3840 5.3 0.0026 0.0010
M2 34680 36.5 0.0023 0.0007
M3 277440 977.0 0.0022 0.0006
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Figure 12. Without initial time correction: a) vertical velocity of the sphere as a func-
tion of time and b) error for different mesh resolutions at different time moments (A -
t =0.125s, B-t = 0.27s and C - t = 0.54s). The orange continuous line indicates the
CPU time needed for each mesh. With initial time correction: c¢) vertical velocity of the

sphere as a function of time and d) error for different mesh resolutions at different time
moments.

B.2. Falling sphere in pure fluid - Overset approach.

We conducted a sensitivity analysis to assess the convergence of our meshes within the overset ap-
proach. In this scenario we evaluate the influence of the mesh sizes of the background and overset mesh

independently, without considering any time correction.

First, the sensitivity to the background mesh has been tested and results are displayed and summarized
in Fig. 13 and Tab. 6. Improvements were observed with mesh M1 compared to the coarsest mesh, MO.
In addition to the reduced RMSE, the computational time remained relatively similar.
as depicted in Fig. 13b and detailed in Tab. 6, the finest mesh, M2, evidenced marginal improvement

compared to MI.

Conversely,

Table 6. Number of cells of the background mesh, CPU times and RMSE for different

mesh resolutions of the background mesh to model the falling sphere in pure fluid with
the ovserset approach.

Number of cells | CPU time [h] | RMSE
MO 5059 91 0.00221
M1 9720 106 0.00210
M2 23040 120 0.00208
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Figure 13. a) Vertical velocity of the sphere as a function of time and b) error for
different background grid sizes at different time moments (A - ¢ = 0.125s, B - t = 0.27s

and C - ¢ = 0.54s). The orange continuous line indicates the CPU time needed for each
mesh.

Regarding the sensitivity to the mesh resolution of the overset region, as presented in Fig. 14 and
Tab. 7, we notice a lower variability compared to the influence of the background mesh quality. Both
Fig. 14 and Tab. 7 show that M1 and M2 exhibit low RMSE, suggesting that further refinements would
not provide much better results while they would demand substantially higher computational costs.
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Figure 14. a) Vertical velocity of the sphere as a function of time and b) error for
different overset grid sizes at different time moments (A - ¢t = 0.125s, B - t = 0.27s and
C -t =0.54s). The orange continuous line indicates the CPU time needed for each mesh.

Table 7. Number of cells of the background mesh, CPU times and RMSE for different

mesh resolutions of the overset mesh to model the falling sphere in pure fluid with the
ovserset approach.

Number of cells | CPU time [h] | RMSE

MO 16904 34 0.00245
M1 38903 80 0.00220
M2 58592 106 0.00210
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Figure 15. Sphere a) trajectory and b) velocity obtained with the morphing mesh ap-
proach. ¢) Plot of the total forces and each contribution exerted on the sphere from the
morphing mesh approach. Resting sphere numerical case.

B.3. Resting sphere.

This section focuses on the mesh convergence study of the resting sphere on a granular bed using the
morphing mesh. Three meshes have been considered as reported in Fig. 15 and Tab. 8.

The different curves displayed in Fig. 15 indicate minimal differences among the three meshes. Finer
meshes were omitted due to their high computational expense, while coarser meshes than MO0, were
excluded due to numerical problems. In fact, according to Tab. 8 and Fig. 15, using MO is sufficient to
replicate the numerical case, showing no advantage in employing a finer mesh.

Table 8. Number of cells of the mesh and CPU times for different grid sizes of the
morphing mesh to model the sphere falling on a dense granular bed.

Number of cells | CPU time [h]
MO 291600 211
M1 550338 1210
M2 984150 6240

B.4. Uniform granular flow around a cylinder.

The final section of the mesh convergence study focuses on examining the impact of grid resolution on
the numerical simulation of the uniform granular flow around a cylindrical obstacle. The results depicted
in Fig. 16 indicate that the intruder is lifted more rapidly with coarser meshes. As a matter of fact,
the slopes of the intruder trajectories obtained with YADE closely resemble those of M0. However, the
initial delay in YADE simulations brings the curves obtained with finer meshes in overSedDymFoam
closer to the trajectories reported by YADE, resulting in a lower RMSE as detailed in Tab. 9. Moreover,
it is noteworthy that very similar trajectories are observed between M2 and M3, implying that further
refinements are unlikely to yield different results.

Table 9. Number of cells of the mesh, CPU times and RMSE for different grid sizes of

the morphing mesh to model the uniform granular flow around a cylinder.
Number of cells | CPU time [h] | RMSE

Mo 3652 7.5 0.40
M1 13832 43.1 0.28
M2 31700 226.2 0.20
M3 70864 1029.0 0.18
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