OpenV FOAM®
Journal

Volume 3 [Technical Notes], Pages 120-145
ISSN: 2753-8168

Modular Framework for the Solution of Boundary-Coupled Multiphysics Problems

Gabriel St-Onge and Mathieu Olivier*

Département de génie mécanique, Université Laval, Québec, QC, Canada, G1V 0A6
Email address: mathieu.olivier@gmc.ulaval.ca

DOI: https://doi.org/10.51560,/0fj.v3.64
Results with version(s): OpenFOAM® v2006
Repository: https://github.com/molivier19/BC-multiphysics

Abstract. This paper presents a modular multiphysics framework developed for OpenFOAM® . The
framework is built around an iterative implicit coupling scheme based on a multi-region partitioned
approach. This scheme allows the implementation of formal implicit time-marching schemes, which
improves the stability of strongly interacting coupled problems. This methodology allows physical in-
teractions to be handled through specifically designed interface boundary conditions. It also allows
region-specific solvers to be implemented as modular class solvers. The coupling methodology is han-
dled with a main program that manages solver-specific actions. This framework aims to facilitate the
implementation and testing of new multiphysics coupling problems in an integrated code structure.
To show the capabilities of the framework to integrate new physics, solvers and boundary conditions
requirements are discussed. Also, three validated examples involving fluid-structure interactions, conju-
gate heat transfer, and fluid-structure-thermal interactions are presented. Although all these problems
are boundary-coupled multiphysics problems, the framework is conceptually not limited to this kind of
problem. The benefit of this work to the OpenFOAM® community is a general and modular frame-
work that facilitates the setup and solution of diversified multiphysics problems, and that illustrates the
implementation of modular interface boundary conditions between physics regions.

1. Introduction

Multiphysics problems are complex and varied. To solve these kinds of coupled problems, multiple
equations need to be solved together. For example, Fluid-Structure Interactions (FSI) are a particular
multiphysics type of problem where a flexible solid structure is interacting with the fluid surrounding it.
Thus, to solve FSI problems, governing equations of elastic solids need to be coupled with those governing
the fluid flow. To solve these two sets of equations, a coupling scheme is used to make good predictions of
the physical phenomena involved. In the literature, several algorithms have been designed to solve such
coupled problems. These approaches are generally classified into two categories: the monolithic approach
and the partitioned approach. Also, to get accurate and numerically stable predictions of multiphysics
problems, special attention needs to be given to the physical strength of the multiphysics interaction
(weak or strong), but also to numerical aspects such as the chosen temporal integration schemes (explicit
or implicit) and the coupling scheme itself (explicit or implicit).

In the partitioned approach, the set of equations of each physical region is solved with its own numerical
solver. The interaction between multiple regions is handled either through boundary conditions or through
source terms implemented within the corresponding solvers. Thus, with this approach, state-of-the-art
solvers can be used mostly as black boxes to handle different physics. Though this approach is relatively
easy to implement, it can lead to stability issues such as those experienced in FSI problems [1]. For weak
physical interactions, the use of simple non-iterative partitioned coupling schemes can lead to stable
simulations. However, for strong physical interactions, where all physical regions have a strong influence
on each other, stability issues will appear. In those cases, an outer iterative loop should be used to
allow the implementation of implicit schemes and, if needed, stabilization techniques such as solution
under-relaxation.
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In the monolithic approach, the multiphysics simulation is solved as a single problem. The discretized
equations are assembled in a single linear system which also includes the interface equilibrium conditions.
As opposed to the partitioned approach, this method exhibits fewer stability issues with stronger physical
interactions and the computational time required to obtain a solution may, in some cases, be better than
with the partitioned approach. However, developing a general-purpose monolithic multiphysics code
is much more involved because existing solvers cannot be used without being extensively modified or
rewritten. Moreover, while the stability problems encountered with the partitioned approach can be
mitigated with the monolithic approach, this comes at the price of matrix structure complexity. Devising
efficient and general preconditioners in this context may be quite challenging as well [2].

When solving unsteady physics, the temporal scheme usually refers to a time-marching procedure in
which the temporal derivatives are discretized with either implicit or explicit schemes. On the other hand,
the coupling scheme refers to the way multiple physical regions are numerically coupled together. This
includes the interpolation of physical data between regions, but also, and most importantly, the sequence
with which the data is transferred from one region to another. Therefore, in the partitioned approach,
there is a distinction between the time-marching scheme used by individual solvers and the sequence of
the whole coupling scheme itself.

To better illustrate this, consider a fluid-structure interaction problem involving the coupling of a
structural solver with a flow solver. Both solvers have their respective time-marching schemes and need
to exchange information on the fluid-solid interface through the boundary conditions. Typically, the flow
solver needs the structural displacement field, and the structural solver needs the load (pressure and
shear) coming from the flow. If implicit time-marching schemes are used in both solvers to obtain the
solution at time level n + 1, implicit coupling is achieved if the data transferred at the interface is taken
at the same time level, hence n + 1. In a partitioned method, this necessarily requires an outer iterative
procedure. On the other hand, even though implicit time schemes are used in the physics solvers, it is
possible to use interface coupling data that lags one step behind (i.e., at time level n). In this case, the
coupling scheme is explicit and no outer iteration is needed. It can also be argued that the time-marching
schemes used by individual solvers are not formally implicit anymore since at least some boundary terms
are then explicit. Moreover, in such a strategy, special attention is needed to ensure proper precision
of the time-marching schemes [3]. Lastly, explicit time-marching schemes or different explicit-implicit
combinations thereof can be used when coupling different physics regions. In these cases, the whole
coupling scheme cannot be fully implicit since some parts of the scheme are inherently explicit. However,
these scheme combinations do not require an outer loop to be consistent.

Multiphysics simulation capabilities are now quite common in many CFD codes and the open-source
software OpenFOAM® makes no exception. In version v2012, a new multi-application coupling procedure
was proposed [4]. This approach uses a coupling scheme based on a parallel partitioned approach where
application-based solvers are coupled through mapped boundary conditions. Also, the coupling between
regions is managed through an MPI communicator such that application solvers are being kept mostly
unchanged from previous OpenFOAM® versions. At the moment, this feature is still being developed
and only a few simple examples are provided [4].

In addition to the capabilities of the current OpenFOAM® release, some external tools were also
developed by the community to solve complex multiphysics problems. For example, the solidsd4foam [5]
framework was developed with a focus on solid mechanics and FSI problems. In this framework, the
coupling scheme used in FSI problems is based on a partitioned approach that implements both explicit
and implicit coupling schemes. The framework includes multiple incompressible flow and structural
models implemented in an object-oriented manner where physical models resolving similar physics are
inherited from the same base class. The implementation of new incompressible flow and structural models
is thus fairly easy.

For more versatile multiphysics capabilities, third-party software like preCICE may be considered.
The preCICE library creates a multiphysics simulation environment where existing single-physics solvers
can be coupled together to solve complex multiphysics problems [6,7]. By using third-party software, one
can take advantage of the strength of different simulation tools to improve multiphysics simulations. The
coupling of the different physics is done with specially designed adapters, and the software implements
explicit and implicit coupling schemes. Time interpolation and data mapping methods are also imple-
mented to ensure compatibility between the different physics involved. Furthermore, preCICE adapters
are already compatible with the OpenFOAM® framework. Thus, FSI problems and Conjugate Heat
Transfer (CHT) problems can be solved readily with the current release of the software.

In this technical note, a modular multiphysics framework based on a multi-region partitioned approach
is presented. The proposed framework uses an iterative procedure in which solver objects are used to
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solve multi-region problems. As such, the implementation is conceptually similar to that of solids4foam,
but it goes further in terms of modularity: the physics solver base class has been generalized to be inde-
pendent of the physics such that there are no restrictions on the physics implemented within the inherited
classes. Moreover, the coupling between different physical regions is handled through dedicated interface
boundary conditions classes. The purpose of this paper is thus to provide implementation guidelines and
working examples of this multiphysics simulation framework implemented within OpenFOAM®. Differ-
ent coupling capabilities such as FSI, Fluid-Structure-Thermal Interaction (FSTI), and CHT have been
integrated. The implementation of these capabilities is presented in Section 2, and validated examples
illustrating these capabilities are presented in Section 3. Among these examples, we demonstrate the use
of artificial compressibility stabilization for FSI through a dedicated interface boundary condition, the
implementation of a mixed interface boundary condition for CHT applications, and the integration of the
HiSA solver [8] to solve FSTI problems involving supersonic flows. Although not presented in the paper,
the framework has also been used for problems involving FSI in which an in-house finite-element struc-
ture code was used [9,10]. Solutions to problems with strong fluid-body interactions were also obtained
with the framework by implementing quasi-Newton methods (variants of Broyden’s method) [11,12].
Hence, this paper contributes to providing new multiphysics coupling capabilities and guidelines to the
community. Some ideas provided herein could also be considered along with recent developments (v2012)
regarding multi-application coupling.

2. Methodology

As mentioned in the introduction, the modular multiphysics framework is developed around a parti-
tioned coupling approach. That is, even if all physics solvers are implemented within OpenFOAM® | they
are treated independently as black boxes in an algorithmic perspective. Since this framework is intended
to support implicit temporal discretization schemes, all solvers involved in the solution need to achieve
iterative convergence at each time step by considering the effects of the neighbor regions. Hence, the cou-
pling algorithm is built around a main multi-region loop, which is implemented in the main application
program. As for the multi-region interactions, they are implemented through the boundary conditions
since this work focuses on boundary-coupled problems. However, the proposed framework could also be
used for problems involving multiphysics coupling within a single physical region. In such cases, virtual
regions (sharing the same physical space) could interact through source terms in the governing equations
of physics solvers.

Algorithm 1 illustrates how the coupling process can be interpreted as a fixed-point iterative procedure
for a typical case where multiple regions interact. In this pseudo-algorithm, d; could be the boundary
field that is transferred by the interface boundary condition (e.g.: displacement, heat flux, traction force).
The solution process of each region is represented by Ry, R1, and Ry. The order in which these solution
processes are used also corresponds to the solution sequence of the multiphysics problem that is being
solved. For example, in FSI problems the region R could correspond to the solid region and the region
R; could correspond to the fluid region. In this specific example, the fluid solver R; would return the
traction on the interface boundary to the solid solver Ry. The field information at the interface would
then be updated by the solid solver for the next iteration. In this algorithm, the parameter w is an
example of an under-relaxation coefficient that can be implemented in cases involving strong coupling
between regions. Its implementation can be done directly within specific solvers, or through boundary
conditions, if needed.

Algorithm 1: Partitioned implicit coupling scheme combined as a fixed point iterative procedure.

dy: boundary field;
R;: solution process in region i;

N: number of time steps;
r: residual;
w: under-relaxation coefficient;
for n=0, n<N do
while r>tolerance do
7 = Ro(Ra(.. Ry (d71h)));
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The multiphysics algorithm consists of three main components. These components are respectively
the region-specific solvers, the interface boundary conditions, and the coupling algorithm. These three
components and their implementation in the framework are discussed independently in the next subsec-
tions.

2.1. Solvers. The coupled partitioned scheme in this framework is taking advantage of standard solvers
to solve each region. However, these solvers need to be compatible with the coupling procedure. Thus, to
standardize the coupling process, an abstract base class was developed. With this base class, any solver
can be organized into key components, and then be implemented as an inherited class. The base class
is called physicsSolver and is presented in Fig. 1. This class diagram presents all the virtual and pure

physicsSolver: IOdictionary

# region_: word

+ physicsSolver (io: IOobject)
+ ~physicsSolver (): void

+ createFields (): void = 0

+ isConverged (): bool = 0

+ solveFields (): void = 0

+ startTimeStep (): void

+ endTimeStep (): void

+ computeDeltaT (): bool

+ returnDeltaT (): scalar

Figure 1. physicsSolver abstract class diagram.

virtual functions that need to be implemented in each solver to comply with the coupling procedure.
Also, these virtual functions correspond to specific steps of the simulation process. It is then possible
to adapt standard and custom OpenFOAM® solvers to fit these requirements. It is also important to
mention that the abstract class is independent of any physical parameter. Thus, the same base class can
be used to implement fluid flow solvers as well as other types of solvers like structural solvers, thermal
conduction solvers, etc. To implement a physics solver in the framework, a new class inherited from
the physicsSolver base class needs to be created. The implementation of new physics solvers can be
achieved by following a few guidelines. The specific implementation steps are presented in Appendix A.1.

Five physics solvers are provided with this paper. A brief description of these solvers’ capabilities is
listed below:

e fluidphysicsSolver is an incompressible flow solver based on the PIMPLE algorithm.

e HiSAphysicsSolver is a compressible flow solver that uses the AUSM (Advective Upstream
Splitting Method) or the HLLC (Harten-Lax-van Leer-Contact) scheme family to solve supersonic
and hypersonic flow problems. This solver is an adaptation of the HiSA solver released by Heyns
et al. [8].

e rhoCentralDyMFluidphysicsSolver is a compressible flow solver that uses the Kurganov and
Tadmor central scheme [13,14] to solve supersonic and hypersonic flow problems. This solver is
based on the rhoCentralDyMFoam solver, which is part of the standard OpenFOAM® release.

e solidElasticThermalphysicsSolver is a structural thermo-elastic solver based on a Lagrangian
formulation. The material is described using the Duhamel-Neumann model presented in the
reference book of Malvern [15]. The solver can be configured to solve only the temperature field,
the displacement field, or both.

e solidStVKphysicsSolver is a geometrically nonlinear structural solver based on a total La-
grangian formulation. The material is described using the Saint Venant-Kirchhoff constitutive
law [15]. This solver can be used for the solution of elastic solids undergoing large displacements.

e solidThermalStVKphysicsSolver is a geometrically nonlinear thermoelastic solver based on
a total Lagrangian formulation. The material is described using the Saint Venant-Kirchhoff
constitutive law [15] with the addition of thermal dilatation in the model. This solver can be
used for the solution of thermoelastic solids undergoing large displacements.

2.2. Interface boundary conditions. Boundary conditions are an important aspect of the coupling
procedure used in multi-region problems. These conditions allow the transfer of information between
regions and thus the interaction phenomena to be considered. Since most multi-region problems constitute
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Figure 2. Illustration of different types of interfaces that can be used for multi-region
problems: (a) conformal interface; and (b) non-conformal interface. The black and red
meshes represent the interface mesh of their respective regions.

a continuum that combines all regions, some conservation conditions need to be satisfied at the interfaces
between the different regions. In a partitioned approach, these conservation conditions can be imposed
with a combination of Dirichlet and Neumann boundary conditions at the interface. In such combination,
the interface is treated as a Dirichlet condition in one region, and as a Neumann condition in the other.
Alternatively, a combination of mixed (Robin) conditions on both sides of the interface can also be used.

The OpenFOAM® software already provides a strong code base to create these interface boundary
conditions. Also, the OpenFOAM® architecture requires the boundary conditions to be linked to their
respective fields in their specific regions at run time. Thus, interface boundary conditions do not need
to be hardcoded in the main application nor in the physics solvers, which allows them to be used in
various scenarios involving different physics without requiring code modifications. This approach makes
it easier to set up complex coupled problems with the same code. Also, it is possible to formulate
boundary conditions to apply different types of under-relaxation, acceleration, or stabilization methods
(an example is presented in Section 3.1). New interface boundary conditions can be implemented by
following specific steps provided in Appendix A.2.

To ensure proper interaction between regions, some numerical aspects, such as mesh interpolation
and mesh configuration, must be taken into account. Since multiphysics problems involve regions with
different physics, each region mesh may differ from one to another in terms of resolution requirements.
Hence, the mesh in a region interface can be either conformal or not (see Fig. 2). In the case of conformal
meshes, the transfer of information is simplified, and a simple nearest-neighbor interpolation is usually
adequate. On the other hand, when non-conformal meshes are involved, mesh nodes are not aligned
between regions. Thus, the transfer of information is more complex, and more elaborate interpolation
techniques are needed. Integration of mesh interpolation methods in new interface boundary conditions
is discussed in Appendix A.2.

Another aspect to take into consideration when implementing multiphysics interface boundary condi-
tions is the mesh configuration of each region. Indeed, different physics solvers may work with different
mesh configurations leaving both sides of a given multiphysics interface at different positions. To illustrate
this, FSI problems involving large structural displacements can be solved by using a total Lagrangian
formulation in the solid solver along with an arbitrary Lagrangian-Eulerian formulation in the fluid solver
(this strategy is used in the examples of Section 3.1 and Section 3.3). In such cases, the solid mesh stays
in the undeformed configuration while the fluid mesh moves and deforms to account for the solid motion,
see Fig. 3. Thus, further attention is needed to ensure that both sides of the interface are interpolated
correctly. These aspects are also discussed in Appendix A.2.
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Figure 3. Examples of meshes for FSI simulation: (a) the fluid (Arbitrary Lagrangian-
Eulerian, ALE) and the solid (total Lagrangian) are in different configurations; and (b)
the solid mesh has been moved so both regions are in the same configuration before
transfer F'SI conditions.

At the time of writing this paper, four interface boundary condition combinations are proposed in
the multiphysics framework. A short description of these interface boundary conditions is listed below.
The first two use custom boundary conditions, while the last two use standard OpenFOAM® boundary
conditions.

e fsiInterfaceDisplacement and fsilnterfaceTraction are used together as FSI interface
boundary conditions based on the Dirichlet-Neumann formulation. The first condition ensures
the continuity of the displacement field by moving the interface of the fluid region according to
the displacement of the corresponding displacement field in the solid region. The second condi-
tion ensures that the momentum equation is respected at the interface by transferring the local
forces from the fluid region to the solid region. These interface boundary conditions assume a
total Lagrangian formulation in the solid region and an Arbitrary Lagrangian-Eulerian (ALE)
formulation in the fluid region.
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e fstiTemperature and fstiHeatFlux are used together as CHT interface boundary conditions
based on the Dirichlet-Neumann formulation. The first condition ensures the continuity of the
temperature field, while the second one ensures the continuity of the heat flux at the interface.
These interface boundary conditions were developed assuming a total Lagrangian formulation in
both domains.

e turbulentTemperatureCoupledBaffleMixed is a CHT interface boundary condition based on
the mixed formulation. For this boundary condition, the continuity of the temperature field and
the heat flux are enforced by the same class in both regions. For this boundary condition to be
consistent, both meshes should be in the same configuration.

e turbulentTemperatureRadCoupledMixed is a CHT interface boundary condition based on the
mixed formulation. As for the last interface boundary condition, both the continuity of the
temperature field and of the CHT are enforced by the same class. However, this condition also
considers radiation. Here again, for this boundary condition to be consistent, both meshes should
be in the same configuration.

The proposed multiphysics framework builds upon the modularity of OpenFOAM®, which allows
end users to easily implement new boundary conditions. In this context, implementing new interface
boundary conditions using either the Dirichlet-Neumann formulation or the mixed formulation is fairly
straightforward, and it can be done without modifying physics solvers. However, special attention to mesh
conformity and configuration (e.g.: total Lagrangian vs. ALE) is needed to ensure proper interpolation
between meshes.

2.3. Coupling scheme. The whole coupling procedure is implemented within the main program called
multiFieldSolver, which is the application that is used to run multiphysics simulations. This procedure
is shown in Fig. 4 and is divided into five steps. Each block illustrated within these steps corresponds to
a member function defined in the solver classes. These functions are discussed in detail in Appendix A.1
along with some implementation guidelines.

All multiphysics simulations begin with the Initialization step where solver objects are created,
and physical fields are initialized for all regions involved. Each specific solver object is associated with
each region at runtime based on user input files, thanks to the selection mechanism implemented in the
constructor of the base class physicsSolver. Thus, no hard coding of the type of physics is necessary
in the main program. After the initialization step, the program enters the Time loop. This loop
corresponds to the time marching procedure, which is the same for all regions (hence, no time step sub-
cycling is implemented at the moment). The time loop is composed of four steps that are sequentially
executed. The first step, which is labeled Start in Fig. 4 is executed at the beginning of each time step.
This step only executes the startTimeStep() function for each region. This function is optional, and it
allows some operations to be performed before the outer loop. The second step of the time loop, which
is called Adaptive At in Fig. 4, allows adaptive time steps to be used. The execution of this step is
also optional. If the adaptive time step option is activated in the controlDict file, the minimum time
step for a given region is computed at run time with the computeDeltaT() function. For supported
solvers, relevant quantities used for the computation of a new time step (e.g.: the maximum Courant
number) are included in the fuSolution file of the corresponding region. The returnDeltaT() function
is then used to return the requested time step for that region. In the multiphysics context, all solvers
can eventually be configured to return a time step based on a given criterion, which means that multiple
time step sizes are returned to the main program. Then, the smallest time step size from all regions
is used as a target by the main program to adapt the actual time step. The next step is the Outer
loop shown in Fig. 4, which corresponds to the iterative coupling scheme itself. In this loop, all fields
from all regions are solved in sequence using the solveFields() function of each solver object. The
actual coupling between the different regions occurs when the boundary conditions are updated within
each solver, usually before the linear systems solution step. To ensure the formal implicitness of the
time-marching scheme, the iterative convergence of the outer loop is monitored using the isConverged ()
function. This function typically monitors the initial residuals of each solver and compares them against
stopping criteria. The outer loop stops once all solvers have reached their respective stopping criteria.
Lastly, the endTimeStep() function allows additional operations to be performed after the outer loop if
needed. As with the startTimeStep() function, it is optional, and the default function implemented in
the base physicsSolver class does nothing.

The structure of the main program along with the base solver class provides a general template that
allows users to solve different types of multiphysics problems. As illustrated in Fig. 4, the structure of
the coupling algorithm is not limited by the number of regions to solve. Since the physical aspects of
the simulation are independent of the coupling algorithm, the modular multiphysics framework presented
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Figure 4. Process diagram of the multiphysics coupling algorithm. Rectangular blocks
correspond to member functions that are implemented in each solver object.

in this paper is also not limited by the type of problem that can be solved. As discussed previously, to
incorporate new physics in the framework, the implementation of a new solver class is needed as well as
the implementation of new interface boundary conditions. These steps are presented in further detail in
Appendix A.1 and Appendix A.2 respectively.

The proposed framework assumes that implicit time-marching schemes are used in all physics solvers.
A formal implicit coupling scheme formulation is achieved through the outer loop. Using an implicit
coupling scheme is key to mitigating constraints associated with stability conditions of explicit coupling
schemes that are likely to be restrictive in multiphysics problems. Nevertheless, the use of explicit
coupling schemes remains possible for the modular multiphysics framework in case they are suitable for
a given problem. In this case, the number of iterations for the outer loop needs to be limited to one.
Moreover, relaxation methods or acceleration techniques such as quasi-Newton coupling algorithms can
be implemented on a per-solver basis or through interface boundary conditions [12].

3. Examples

To illustrate the capabilities of the proposed multiphysics framework, three examples are presented.
These examples were chosen to show the versatility of the framework by illustrating a variety of physics
such as FSI, FSTI, and CHT. In some cases, results obtained with the framework are also compared with
known reference cases for validation purposes.
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3.1. Flexible tube. The first example presented is an FSI simulation involving a flexible three-dimensional
tube that is deformed through the action of a pressure wave. In this scenario, the flow strongly interacts
with the flexible tube since the density ratio is near unity, which results in a strong added-mass effect.
This example is a known reference case that has been presented in different papers [16-18]. Also, this
is an interesting problem because such scenarios involving incompressible flows are known to be numer-
ically unstable, especially when the mass ratio of the fluid over the solid is significant. To circumvent
this problem, an artificial compressibility source term is added to the cell layer next to the fluid-solid
interface in the fluid domain, as proposed in [16]. In the proposed implementation, this source term is
added through the pressure boundary condition at the fluid-solid interface as discussed further below.

To solve this problem with the proposed framework, the fluid region is solved with the incompressible
flow solver fluidphysicsSolver, and the solid region is solved with the geometrically nonlinear structural
solver solidStVKphysicsSolver. The geometry of the flexible tube problem is composed of two regions
that consist of concentric cylinders as shown in Fig. 5. The length of the tube is 0.05 m, the inner radius
is R; = 0.005 m, and the outer radius is R, = 0.006 m. The density and dynamic viscosity of the fluid
are given respectively by:

ps = 1000 kg/m® =3 x 1072 kg/(m-s), (1)
while the density, Poissons ratio, and Young’s modulus of the solid are respectively:
ps = 1200 kg/m*, v =03, FE =3x10°Pa, (2)

where subscripts f and s are used to distinguish respectively fluid and solid properties when needed.
As for the boundary conditions, the tube is held fixed at both ends, and a zero normal stress condition
is applied on the outer wall. A zero static pressure and a zero normal velocity gradient are applied at
the outlet of the fluid domain. At the inlet, to initiate the flow, a total pressure pulse of 1333.2 kPa
is imposed for the first 0.003 s of simulated time. The total pressure is set at 0 afterward and a zero
normal gradient is used for the velocity field. For the interaction between the fluid and the solid to
be considered, the velocity and the normal stress must be continuous at the interface. To this end,
on the solid side, the fsiInterfaceTraction Neumann condition is used to retrieve the local pres-
sure and shear forces from the fluid region and to apply the corresponding load on the solid structure.
On the fluid side, the fsiInterfaceDisplacement boundary condition is used to retrieve the displace-
ment field from the solid region and move the fluid mesh interface accordingly. The fluid mesh is then
adapted with a displacement-based Laplaces equation, and the standard movingWallVelocity is used
as a Dirichlet boundary condition on the velocity field. For the pressure field, a modified gradient con-
dition called fsiInterfacePressure is used. This specific gradient condition is such that the linear

(a) (b) (c)

Figure 5. Meshes used for the grid convergence study of the flexible tube case: (a)
coarse mesh; (b) medium mesh; and (c) fine mesh.
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Figure 6. Grid convergence study using the p/ppuse metric at four locations on the
centreline of the flexible tube.

system coefficients have been modified to mimic the effect of an implicit artificial compressibility source
term in the pressure equation in the cells next to the FSI interface. This is achieved by modifying the
gradientBoundaryCoeffs and gradientInternalCoeffs methods accordingly. This modification en-
sures the stability of the iterative coupling procedure and tends towards a zero-gradient condition as the
iterations converge. Hence, at convergence, the incompressible flow behavior is retrieved. From another
perspective, this procedure can be interpreted as implicitly under-relaxing the pressure at the interface
between successive iterations of the outer loop.

To validate the flexible tube results, a grid convergence study is presented. Three pairs of meshes of
different resolutions are used. These meshes are shown in Fig. 5. The coarse meshes contain 19 968 cells
in the fluid region and 13 312 cells in the solid region. The time step for this coarse simulation is set
to 1.25 x 107 s. Systematic refinement with a factor of 2 is successively applied to obtain the medium
(159 744/106 496 cells) and fine meshes (1 277 952/851 968 cells). Similarly, time steps are adjusted
according to the mesh refinement factor (At = 6.25x 107° s for the medium mesh and At = 3.125x107% s
for the fine mesh). The results of these tests are presented using the dimensionless pressure (p/ppuise)
against time. This metric was monitored at four locations on the center line of the fluid region, and the
results are presented in Fig. 6.

Moreover, the net volumetric influx is compared with the results from Degroote et al. [16]. Results
are presented in Fig. 7. It can be observed that the results are quite similar in trends although a slight
offset is observed. This offset may be explained by the following hypotheses considering the information
provided in [16]:

e Degroote et al. [16] uses a first-order temporal scheme, a smaller cell count, and a larger time
step.

e Degroote et al. [16] use a shell model for the solid region, which may give a slightly different
response when compared to the 3D model used here.

3.2. Heated cylinder. The second example presented is a CHT simulation. This simulation involves a
rigid stainless-steel cylinder that is heated by a hypersonic flow. In this scenario, the compressible flow
interacts with the cylinder through conduction and convection; radiation effects are not considered. This
example is a known reference case that has been presented in different papers [19-21].

For this problem, the fluid region is solved with the compressible flow solver called HiSAphysicsSolver
which is an adaptation of the HiSA solver presented by Heyns et al. [8]. In addition, since the flow regime
is expected to be turbulent, the Reynolds-averaged turbulence model k-w-SST is used. The solid region is
handled with the solver solidElasticThermalphysicsSolver which solves the thermoelastic equations.
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Figure 7. Comparison of the temporal evolution of the net volumetric influx in the
flexible tube.

However, for this specific simulation, only the energy equation is used as the solid region is considered a
rigid body. The geometry for the heated cylinder problem is composed of two regions. The fluid region is
created from a rectangular box of length L and height H while the solid region is composed of an annular
region of inner diameter D; and outer diameter D,. This geometry is shown in Fig. 8. Values for these
geometric parameters are:

D; =0.0608 m, D,=0.0762m, L=15D,, H =10D,. (3)

As for the physical properties, they are characterized by the heat capacity Cp, the thermal conductivity
K, the molar mass M, the dynamic viscosity p, and the density p. The physical properties of the fluid
are:

Cpp=1005J/(kg - K), r;=9.18x10"2 W/(kg-K), M = 28.965 kg/mol,

p=6.58 x 1075 kg/(m - s), )

whereas those of the solid are:
Cps =468 J/(kg-K), ks=134W/(m-K), p,=8 238 kg/m>. (5)

The far-field conditions correspond to a flow with a horizontal velocity of 2 246.54 m/s, a pressure of
101.3 kPa, and a temperature of 300 K. These flow conditions are used as initial conditions as well as
on all the domain’s outer boundaries by using so-called characteristic boundary conditions provided with
the HiSA library. As for the interface boundary conditions, two combinations are tested. The first one
is the mixed combination, which uses the compressible: :turbulentTemperatureCoupledBaffleMixed
condition on both sides of the interface, i.e., in the solid and in the fluid as well. The second combination is
the Dirichlet-Neumann combination, which uses the fstiTemperature condition on the fluid side and the
fstiHeatFlux condition on the solid side. These two interface conditions combinations should provide
the same results although they are formulated differently.

This problem is solved using the mesh presented in Fig. 8. The left figure presents a general picture of
the mesh, while the right figure presents a close-up view of the mesh in the cylindrical region. The mesh
is composed of hexahedral cells and the interface between the fluid and solid regions is conformal.

To validate the simulations, comparisons with results from the literature are presented. This heated
cylinder scenario was first reported in a paper by Wieting [19] where experimental and theoretical results
were presented. More recently, Hongpeng et al. [21] presented a numerical study where a coupling
strategy was used to transfer the heat flux from the fluid region to the solid region. For the sake of
this validation, the normalized heat fluxes (q/qo where ¢g is the initial heat flux at § = 0) through the
cylinder’s wall are compared with the experimental results of Wieting [19] (experimental run 37) and
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Figure 8. Geometry and mesh used for the heated cylinder simulation. (a) overview of
the geometry; (b) overview of the mesh; and (¢) close-up view of the solid region mesh
(red) and of the interface. The mesh contains approximately 61 600 cells in the fluid
region and 19 200 in the solid region.
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Figure 9. Heat flux at the interface of the heated cylinder compared with the results
of Wieting [19] and Hongpeng et al. [21]: (a) heat flux at t = 0.0002 s; and (b) heat flux
at t = 0.0012 s.

the corresponding numerical results of Hongpeng et al. [21] for two specific times after the onset of the
experiment: ¢ = 0.0002 s and ¢t = 0.0012 s. Fig. 9 shows that the results obtained with the multiphysics
framework are in good agreement with previously published results. Also, no significant differences can
be observed between the simulation that uses the Dirichlet-Neumann interface boundary conditions and
the mixed interface boundary conditions.

3.3. Crossflow flexible plate. The last example presented is an FSTI simulation. This simulation
involves a flexible plate that is deformed and heated by a hypersonic flow. The flexible plate is deformed
by the aerodynamic forces of the fluid, and it is also heated by the high temperature that is generated
close to the solid region. This example is interesting because it involves large deformations of the solid
region as well as thermal expansion. Similar scenarios are often used as reference cases [5,6]. However,
these problems usually involve incompressible flows and elastic structures. This example is intended to
explore the modularity of the presented framework by coupling multiple physics in a single simulation.
To solve this problem with the multiphysics framework, the fluid region is solved with the compressible
flow solver HiSAphysicsSolver. In addition, since the flow regime is expected to be turbulent, the
Reynolds-averaged turbulence model k-w-SST is used. The solid region is solved with the solid solver
solidThermalStVKphysicsSolver. In this simulation, both the momentum and energy equations are
coupled at the fluid-solid interface. The geometry of the crossflow flexible plate problem is composed of
two regions. The fluid region is created from a rectangular box of length L and height H, and the solid
region is composed of a rectangular section of height A and width w located at a distance [ from the left



Modular Multi-Region Framework 133

TS

(b) (c)

Figure 10. Geometry and mesh used for the crossflow flexible plate simulation: (a)
overall view of the geometry; (b) overall view of the mesh; and (c) close-up view of the
solid region mesh (red) and the interface.

side of the fluid region. This geometry is shown in Fig. 10, and values for these geometric parameters
are:

L=5m, H=3m, [=15m, h=1m, w=01m (6)
The physical properties of the fluid are:
Cp.r =1005J/(kg-K), ry=2.98x 1072 W/(m-K), M = 2896 kg/mol,
p=2.135x10"° kg/(m - s),
whereas the physical properties of the solid are:
Cps =468 J/(kg-K), ks=134W/(m-K), ps=2692.8kg/m?,
E=6732x10°Pa, a=348x10"%1/K, v=0.3,
where « is the thermal expansion coefficient, while the other symbols retain the same meaning as in
previous cases. Note that, while the physical properties of the fluid correspond to air, those of the
solid are arbitrary. They were chosen to illustrate a large deformation case with a relatively thick plate,
which prevents the generation of stiff matrices. Far-field conditions for this problem consist of a velocity
of 1 736.11 m/s, a temperature of 300 K, and a pressure of 101.3 kPa. These far-field conditions are
used as initial conditions, and they are applied at the inlet and the outlet of the domain as well by

using characteristic boundary conditions implemented within HiSA. The top and bottom boundaries are
symmetry planes.

(7)

(8)
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The following interface boundary conditions are used to solve the interaction between the fluid and the
solid. For the momentum equation, the Dirichlet-Neumann combination of fsiInterfaceDisplacement
for the fluid mesh displacement (with movingWallVelocity for the velocity) and fsiInterfaceTraction
for the solid is used. This interface boundary conditions combination is the same as the one presented
in Section 3.1, except that pressure stabilization (provided by the fsilnterfacePressure condition)
is not required here because the flow is compressible. Hence, the coupling algorithm is not subject to
the added-mass instability reported by Causin et al. [1]. For the energy equation, the combination of
fstiTemperature and fstiHeatFlux is used. As presented in Section 3.2, these interface boundary
conditions are used to predict aerodynamic heating in the solid region.

This problem is solved using the mesh presented in Fig. 10. The mesh is composed of hexahedral cells
and the interface between the fluid and solid region is conformal. It also contains approximately 33 090
cells in the fluid region and 2 560 cells in the solid region. Moreover, an adaptive meshing strategy is
used in the fluid region to track and refine the mesh in areas with large density gradients. This strategy
improves accuracy for phenomena like shock waves and expansion waves while keeping a coarser mesh in
other regions. These phenomena also have an impact on the aerodynamic forces and heat fluxes, which
are usually the quantities of interest in hypersonic flow problems. Fig. 11 shows the adapted mesh for the
current simulation after 0.01 s of simulated time. The dynamic meshing strategy is implemented within
a class called dynamicRefine2DMotionSolverFvMesh and is based on the work of Kumar et al. [22] and
Eltard-Larsen et al. [23]. The metric that is used for the refinement is a normalized density gradient:

VpA
; (9)
P2 — pP1
where the parameter A is a cell-based reference dimension, while po and p; are typical density values
expected in front and behind a normal shock wave that may occur. These last parameters can be
estimated with the normal shock theory [24]. In the presented results, the values of these parameters are:

IVoll =

A=3x10"m, p; =1.1765kg/m* p; =5.8825 kg/m?. (10)

Figure 12 presents a visualization of the pressure field for the fluid region and of the displacement
field for the solid region at different times. A comparison between the flexible plate and a rigid plate is
also presented in the same figure. In the early instants of the simulation, a normal shock is formed in
front of the flexible plate, which induces large aerodynamic forces. At this stage, differences between the
flexible and the rigid plate are minimal. A few moments later, the flexible plate starts deforming and a
detached shock expands in front of it. For large deformation, it can be observed that the shock patterns
are effectively different between the flexible plate case and the rigid plate case.

Figure 11. Illustration of the deformed mesh obtained using the adaptive mesh strategy.
A region of high-density gradient can be observed with higher cell density. This mesh
corresponds to the simulation at 0.01s of simulation.
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Figure 12. Dynamics of the flexible and rigid plates at different times. The flexible
plate is shown on the left, and the rigid plate is shown on the right. The fluid region
shows the pressure field, while the solid region shows the displacement field. The S axis
corresponds to the location where the heat flux and displacements are sampled.

Large deformations also have an impact on other flow properties. Indeed, the heat exchanged between
the fluid and the solid regions is also affected by the deformation of the plate. As a quantitative measure,
heat flux and displacements are plotted at different times to compare results for the flexible plate and the
rigid plate (see Fig. 13). When the structure is subjected to large deformations, significant heat transfer
differences can be observed between the flexible and rigid plate cases.

Lastly, this example shows that the modularity of the framework allows the solution of complex
interaction for multiphysics problems. Also, the methodology presented in this paper allows interface
boundary conditions to be used in different contexts.

4. Conclusion

This paper presented a multiphysics framework implemented within OpenFOAM-v2006. The main
application uses a coupling algorithm based on a multi-region partitioned approach. To improve stability
for strong physical interactions, an iterative method that manages multiple solvers sequentially was
implemented, which allows implicit temporal schemes to be used consistently. The proposed methodology
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Figure 13. Heat transfer and displacement magnitude for the rigid and flexible plates:
(a) displacement magnitude (normalized with the height of the plate); and (b) heat flux
(normalized with the stagnation heat flux). Values were monitored along the S-axis at
different times.

allows standard solvers to be implemented within C++ classes. This generalizes and facilitates solver
interchangeability since solvers can then be used as modular objects within the main application. To
ensure standardization of all solvers, solver classes are inherited from an abstract base class.

An important aspect of the proposed approach is the fact that the multiphysics coupling is managed
in most parts through interface boundary conditions. These boundary conditions allow physical data to
be transferred from one region to another. Moreover, they are implemented as standard OpenFOAM®
boundary conditions, which makes the coupling of different physics highly modular. On the other hand,
the coupling algorithm itself is managed by the main application. The coupling algorithm consists of
a fixed-point iterative loop that allows implicit time schemes to be applied consistently in all solvers
involved in a given simulation. The main multiphysics application is independent of any physical model.
The application only manages calls to solver objects’ specific functions.

In addition to the presentation of the framework, some multiphysics problems involving fluid-structure
interactions and conjugate heat transfer were presented to illustrate the capability and versatility of the
proposed framework. Results from these examples show that the framework can solve strong interactions
with multiple regions involving different physics. Hence, this modular multiphysics framework facilitates
the setup and simulation of problems involving interactions between regions with different physics by
providing a generalized coupling framework and providing relatively easy-to-use templates to implement
new physics solvers and new interface boundary conditions.
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Appendix A. Numerical implementation and integration

A.1. Physical solver class template. To illustrate the creation of a new physics solver, the implemen-
tation of a dummy solver called physicsSolverTemplate is presented. The presentation of this process
aims to give a better understanding of the requirement for the implementation of a new physics solver
and to present the way standard solvers can be adapted to fit those requirements.

The first step for creating a new physics solver is to define the solver class in a header file. List. 1
presents the implementation of the physicsSolverTemplate.H file. In this code, all parameters that are
needed by the solver should be defined between lines 7 and 29. Those parameters include field objects,
mesh information, dictionaries, and any other parameters that are needed during the simulation process.

class physicsSolverTemplate

public physicsSolver

protected:
// Protected data
// All physical parameters required for the physics
// solver should be defined here.
// Mesh

autoPtr<dynamicFvMesh> meshPtr_;
dynamicFvMesh& mesh_;

// Dictionary
IOdictionary properties_;

// Field
autoPtr<volVectorField> Uptr_;
autoPtr<volScalarField> rhoptr_;

autoPtr<volVectorField> divPhiU_;
autoPtr<volScalarField> divPhiRho_;

// Other
scalar initialResidual_;
autoPtr<pimpleControl> pimple_;

//

Protected Member Functions

//

Optional custom functions

// Functions
void computeExplicitFluxes ();
bool validateIODictionary ();

/!

//— Disallow default bitwise copy construct
physicsSolverTemplate (const physicsSolverTemplate&);
//— Disallow default bitwise assignment
void operator=(const physicsSolverTemplate&);
public:

//— Runtime type information
TypeName ("physicsSolverTemplate");

// Constructors
//— Construct from components
physicsSolverTemplate
(

const IOobject& io,
const word& regionName

)i
Destructor
virtual “physicsSolverTemplate ();

// Member Functions
virtual void createFields ();
virtual bool isConverged ();
virtual void solveFields (); /
virtual void startTimeStep (); //
virtual void endTimeStep(); // Optional
virtual bool computeDeltaT (); / Optional
virtual scalar returnDeltaT (); // Optional

// Required
/ Required
Required
// Optional

Listing 1. Implementation of a dummy physics solver called physicsSolverTemplate
in the multiphysics framework.

Another important aspect of the implementation of a new physics solver is the definition of member
functions. These functions are inherited from the base class as it is shown in Fig. 1 of Section 2.1. However,
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only createFields(), isConverged(), and solveFields() are required. Other member functions such
as startTimeStep(), endTimeStep (), computeDeltaT(), and returnDeltaT() are optional. Additional
member functions, such as those between lines 32 and 39 in List. 1, can be defined as well if needed.
These custom functions can compute or validate data that is needed by other functions, or perform
computations that occur multiple times in a given function, for example.

After all components of the solver are fully defined in the physicsSolverTemplate. H header file, those
components can be implemented in the physicsSolverTemplate.C source file. The implementation of
this file is discussed in three steps. In the source file, custom class-specific functions are usually imple-
mented first. List. 2 presents the implementation of two custom functions for the physics solver called
physicsSolverTemplate. Custom functions can be used to compute values for class parameters such as
the computeExplicitFluxes () member function, or they can be used to return objects like bool, scalar,
etc. An example of a validation function is presented with the function called validateIODictionary().

~
void Foam:: physicsSolverTemplate :: computeExplicitFluxes ()

// Field references
volVectorField& U = Uptr_();
volScalarField& rho = rhoptr_();

// Compute value
volVectorField phiU = ...
volScalarField phiRho =

// Assign value
divPhiU_() = fvc::div(phiU);
divPhiRho_() = fvc::div(phiRho);

}

bool Foam:: physicsSolverTemplate :: validateIODictionary ()

/ References
IOdictionary& properties = properties_;

// Local variable
bool validData = false;

// Validate Data
if ()
validData = true;
}
return validData;
}
-

Listing 2. Implementation of custom functions for physicsSolverTemplate dummy solver.

For the second implementation step, the solver object constructor needs to be implemented. List. 3
presents the implementation of the constructor for the physicsSolverTemplate solver. In this specific
constructor, different class parameters are initialized. Also, the constructor can be used to perform simple
actions that are needed upon the creation of a solver object. If needed, these actions should be placed
between lines 46 and 59 in List. 3.

~
Foam:: physicsSolverTemplate :: physicsSolverTemplate

(

const IOobject& io,
const word& regionName

physicsSolver (io, regionName),

meshPtr_

(

dynamicFvMesh : : New
IOobject
region._ ,
io.time ().timeName(),

io.time (),
IOobject : : MUST_READ

)
mesh_(meshPtr_()),

properties_

(
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IOobject
(

"properties",

io.time ().constant (),
mesh_,

I0object : : MUST_READ,
IOobject : : NO_-WRITE

)

Uptr_(nullptr),
rhoptr_(nullptr),

divPhiU_(nullptr),
divPhiRho_(nullptr),

initialResidual_(0),
pimple_(nullptr)

//

Actions to do upon the construction
of the solver object

pimple_.set

(

new pimpleControl

(

mesh

)
)5

Listing 3. Implementation of the constructor for physicsSolverTemplate dummy solver.

The last implementation step is dedicated to member functions. The first action that is performed by
the algorithm is to initialize pointers to field objects within each solver. This action is performed by the
createFields () function. The reason pointers are used is to allow the field initialization to be carried
out once all region solvers have been initialized. This is required so that multi-field boundary conditions
classes can access other regions’ information upon creation. Usually, OpenFOAM® solver applications
implement the creation of field objects in a file called createFields. H. The content of this file can be used
as a guide to implement the createFields () function. As an example, List. 4 presents the initialization
of fields U, rho, divPhiU, and divPhiRho with their associated field objects.

void Foam:: physicsSolverTemplate :: createFields ()
{

Uptr_.reset

(

new volVectorField

(
IOobject

nyn
mesh_. time ().timeName(),
mesh_,
IOobject : : MUSTREAD,
IOobject : : AUTO-WRITE
)
mesh_
)
)i

rhoptr_.reset

(

new volScalarField

(
IO0object

"rho",

mesh_.time ().timeName(),
mesh_,

IOobject : : NOREAD,
IOobject : : AUTO_WRITE

thermo.rho ()

)
)3

divPhiU_.reset
(

new volVectorField
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IOobject
(
"divPhiU"
mesh_. time ().timeName(),
mesh_
)
mesh_,
dimensionedVector ("", dimDensityxdimVelocity /dimTime, vector (0,0,0))
)
)

divPhiRho_.reset
(

new volScalarField
(
IOobject
(
"divPhiRho",
mesh_. time ().timeName(),
mesh_
)
mesh_,
dimensionedScalar ("", dimDensityxdimDensity /dimTime, 0.0)
)
)i
}

Listing 4. Implementation of createFields() function for physicsSolverTemplate
dummy solver.

To solve the physics associated with each region, the function solveFields () is used. This function is
dedicated to solving governing equations and contains only the solution steps. In standard OpenFOAM®
solvers, the solution process is usually implemented in the main application source code. The content of
these files can be used as a guide to implement the solveFields() function. However, it is important to
note that the time loop should not be included in the solveFields() function as it is managed by the
main multiphysics application (multiFieldSolver).

-
void Foam:: physicsSolverTemplate :: solveFields ()

/ Mesh and fields references
dynamicFvMesh& mesh = mesh_;
volVectorField& U = Uptr_();
volScalarField& rho = rhoptr_();
volVectorField& divPhiU = divPhiUptr_();
volScalarField& divPhiRho = divPhiRhoptr_();

scalar& initialResidual = initialResidual_;

Solve physical fields

/i

initialResidual =

Listing 5. Implementation of solveFields() function for physicsSolverTemplate
dummy solver.

To ensure that physical interactions between all regions are accurate and consistent with the implicit
time-marching schemes, iterative convergence of the main coupling loop should be achieved. Thus, the
isConverged() function is used to evaluate the convergence state of each region involved in a given
simulation. This function is used to check if the equation residuals have reached a certain threshold.
The function returns a bool object to the main coupling algorithm to indicate if each solver has reached
iterative convergence or not. To validate the convergence state, initial residuals are compared to their
corresponding criteria, as presented between lines 8 and 12 in List. 6. Also, the initial residual value
must be assigned to the corresponding class parameter in the solveFields() function, as presented on
line 18 in List. 5. However, for physics solvers based on the PIMPLE algorithm, convergence criteria are
already checked by the 1loop() function of a pimpleControl object. Thus, lines 3 to 14 in List. 6 can be
replaced by line 15.

bool Foam:: physicsSolverTemplate ::isConverged ()

{
scalar& initialResidual = initialResidual_;
bool converged = false;
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scalar Threshold = ... ;

// Check convergence

if ( initialResidual < Threshold)

{
converged = true;
}

return converged;
// return pimple_.loop ();

Listing 6. Implementation of isConverged() function for physicsSolverTemplate
dummy solver.

As discussed previously, there are four optional member functions that can be implemented in the
physics solver. The startTimeStep() function can be implemented if some actions are needed before
the first iteration. Similarly, the endTimeStep() function can be implemented if some actions are needed
after the last iteration. Also, the framework allows adaptive time stepping to be implemented within
physics solvers. To implement the optional adaptive time-stepping options, functions computeDeltaT ()
and returnDeltaT () should be implemented. The computeDeltaT() function is used to trigger adaptive
time stepping if needed. In such a case, the returnDeltaT() function is used to compute the new time
step of the corresponding region and return its value to the main program. Adaptive time-stepping
algorithms are common among many OpenFOAM® solvers. In most solvers, the adaptive time step is
computed within the file setDeltaT.H. To compute a new time step, the program uses the maximum
Courant number value that is computed by the CourantNo.H file. The content of those two files can be
used as a guide to implement the computeDeltaT() and the returnDeltaT() functions.

void Foam:: physicsSolverTemplate :: startTimeStep ()

Actions to do before solving the fields

}

void Foam:: physicsSolverTemplate :: endTimeStep ()

{

Actions to do after solving the fields

}

bool Foam:: physicsSolverTemplate :: computeDeltaT ()
bool computeDeltaT = false;

// Check if adaptive time step is required

i ()

{
computeDeltaT = true;
}

return computeDeltaT ;

scalar Foam:: physicsSolverTemplate :: returnDeltaT ()
// Compute Courant number or other metric
CoNum =
Compute new time step
deltaTime =

return deltaTime;

Listing 7. Implementation of optional member function for physicsSolverTemplate
dummy solver.

As presented, only two files (physicsSolverTemplate. C and physicsSolverTemplate. H) are needed to cre-
ate a new physics solver that works with the multiphysics framework. Also, adapting existing OpenFOAM®
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solvers is a matter of moving the corresponding source code to the appropriate functions of a class derived
from physicsSolver.

A.2. Multiphysics interface boundary condition template. This section illustrates the creation of
a new interface boundary condition for multiphysics simulations. The integration of interpolation tools
and mesh configurations is also discussed.

To implement a new interface boundary condition using the Dirichlet-Neumann formulation, two
OpenFOAM® boundary conditions should be created. The Dirichlet condition is inherited from the
fixedValueFvPatchFields type boundary condition and the Neumann condition is inherited from the
fixedGradientFvPatchFields type boundary condition. However, to implement a new interface condi-
tion using the mixed formulation, only one OpenFOAM® condition is needed. In this case, the mixed
condition is inherited from the mixedFvPatchFields type boundary condition. All these types of bound-
ary conditions (fixed value, fixed gradients, and mixed) can be created using existing examples from the
OpenFOAM® library. Code templates for boundary conditions can also be accessed using the foamNewBC
command.

As discussed in Section 2.2, mesh interpolation is needed to transfer field information from one region to
another. Fortunately, both the standard OpenFOAM® software and the proposed modular multiphysics
framework provide mesh interpolation tools that can be used. The mesh interpolation functionality from
the standard OpenFOAM® software is called mappedPatchBase. This functionality is based on mapping
tools from the OpenFOAM® software, which allows the redistribution of mesh information from one
region to another. Also, multiple sampling models can be specified, such as the nearest face method
for conformal meshes or the nearest face Arbitrary Mesh Interface (AMI) method for non-conformal
meshes. To integrate this interpolation tool in a boundary condition, a few steps are needed. Firstly, one
would need to include the header file mappedPatchBase.H in the source file of the boundary condition,
as presented in List. 8. Also, modification to the updateCoeffs() method in the boundary condition
source file is needed. This mapping tool is used to retrieve the neighbor mesh and neighbor fields, as
presented on lines 8 to 20 in List. 8. This information is then mapped on the owner mesh, as presented
on line 23 in List. 8. With these mapping steps done, the boundary condition can be updated.

-
#include "mappedPatchBase.H"

void Foam::...FvPatch... Field :: updateCoeffs ()
/ Access neighbor mesh information
const mappedPatchBase& mpp =
refCast <const mappedPatchBase>(patch (). patch ());
const polyMesh& nbrMesh = mpp.sampleMesh ();
const label samplePatchi = mpp.samplePolyPatch ().index ();
const fvPatch& nbrPatch =
refCast <const fvMesh>(nbrMesh).boundary ()[samplePatchi];

// Access neighbor field information
const ...FvPatch... Field& nbrPatchField =

refCast < const ...FvPatch...Field >

(

nbrPatch.lookupPatchField<vol ... Field, ...> ( nbrFieldName_. )
)i
/ Retrieve field to obtain local wvalues
tmp <...Field> nbrField( nbrPatchField.patchInternalField () );
// Distribute field information on owner mesh
mpp. distribute (nbrField.ref ());
/ Evaluate boundary condition
}
=

Listing 8. Integration of the mappedPatchBase mesh interpolation tool in an interface
boundary condition.

Alternatively, a mesh interpolation (or extrapolation, as its name suggests) class called radialExtrapolation

is available in the proposed framework. This class can be used to redistribute specific mesh information
from one region to another. Different interpolation (or extrapolation) methods can be specified: nearest-
neighbor, Radial Basis Function (RBF), or Inverse Distance Weighting (IDW). Also, a sampling method
is needed along with the interpolation methods. The sampling can be done from the source’s nearest
point, from a source’s group of near points, or from all the source’s points.




© 00Uk WN -

O U WN -

144 G. St-Onge and M. Olivier

To integrate this mesh interpolation tool in a specific boundary condition, a few steps are needed.
Firstly, one would need to include the header file radialExtrapolation. H in the source file of the boundary
condition, as presented in List. 9. Also, modification to the updateCoeffs() method in the boundary
condition source file is needed. To interpolate from one region to another, the neighbor mesh and the
neighbor fields are needed. To retrieve this information, lines 8 to 23 in List. 9 are used. Also, the
radialExtrapolation object needs to be created. In List. 9, this is done through lines 28 to 34. When
the interpolator object is created, interpolation weights are calculated at the same time. Then, the
interpolation object can be used (lines 40 to 43 in List. 9), and the boundary condition can be updated.

~
#include "radialExtrapolation.H"

void Foam::...FvPatch... Field :: updateCoeffs ()

Access neighbor mesh information

ébnst fvMesh& nbrMesh

db (). time ().lookupObject<fvMesh>(nbrRegionName_)
)

// Access neighbor field information

label nbrPatchID

(
nbrMesh . boundaryMesh (). findPatchID (nbrPatchName_)
)i

const vol...Field& Field =
nbrMesh.lookupObject<vol ... Field >("Field");

Retrieve field to obtain local values

...Field tmpField ( ... ):
if (updateInterpolator.)

/ Create interpolator
interpolatorNbrOwn_. clear ();
interpolatorNbrOwn_ = radialExtrapolation ::New
(
nbrMesh . boundary () [nbrPatchID]. Cf(),
patch (). Cf(),

dict_
)
updatelnterpolator. = false;
}
/ Interpolate field information on owner mesh
mapNbrField. = interpolatorNbrOwn_—>pointlnterpolate
(

tmpField
)

Evaluate boundary condition

Listing 9. Integration of the radialExtrapolation mesh interpolation tool in an in-
terface boundary condition.

As discussed in Section 2.2, mesh interpolation tools usually consider all regions to be in the same con-
figuration. However, this is not always the case. For example, as presented in Fig. 3 for FSI simulations,
the fluid region is usually solved with an ALE approach where the solid boundary is in the deformed
configuration, while the solid is usually solved in the reference configuration. Thus, a few steps are needed
in the updateCoeffs () method located in the boundary condition source file to perform the interpolation
consistently. Firstly, the header file pointField. H needs to be included in the source file of the boundary
condition, as presented in List. 10. Also, before the creation of the interpolation weights, the mesh in the
undeformed or reference configuration is moved to the deformed configuration as presented between lines
10 and 19 in List. 10. After the interpolation step is completed, the mesh is moved back to the original
configuration as presented between lines 30 to 39 in List. 10.

#include "pointField.H"

void Foam::...FvPatch... Field :: updateCoeffs ()

{
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// Move the static mesh in the deformed configuration.

{

const pointVectorField& pointD =
staticMesh .lookupObject<pointVectorField >("pointD");

vectorField newPoints = staticMesh.points ()
+ pointD.primitiveField ();

const_cast<fvMesh&>(staticMesh ). movePoints (newPoints);

Create interpolator step
or

Distribute field step

T

N

// Move the static mesh back in the initial configuration.

const pointVectorField& pointD =
staticMesh.lookupObject<pointVectorField >("pointD");

vectorField newPoints = staticMesh.points ()
— pointD.primitiveField ();

const_cast<fvMesh&>(staticMesh ). movePoints (newPoints);

}
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Listing 10. Integration of a moving mesh strategy to ensure interpolation compatibility

between regions.
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